Practical JMS

An Introduction to concepts and a guide to developing applications

Table of Contents (Note all Page numbers are approximate at this point)

Dedication
Acknowledgements
Foreword (?7?)
Preface

Part I: Getting Started

— Arefresher on Middleware
o0 RPC Based
o MOM
o MOM and EAI
- What is IMS?
- Why JMS?
— JMS and the J2EE platform.
— Common misconceptions about JMS.
- Summary.

- Messaging Styles supported by JIMS

— Understanding the JMS players

— Your first point-to—point program

— Your first publish—and-subscribe program
— Compiling and Running the programs

- Summary

— Administrable Objects
§ The Destination object
§ The Connection Factory

— Connecting to your JMS provider

- Sessions

- Message Consumers

- Message Producers

— Shutting down cleanly

- Summary

- JMS and Transactions
o Distributed Transactions
— Understanding Message—delivery styles
0 Synchronous
0 Asynchronous
o Concurrent
— Understanding Message Delivery Order.
- Message Duplication.

- JMS and Multi-threading.
— JMS and Security
- Summary

Part 1l: JMS Messaging

— Introducing the JMS Messages
— The Message interface
— The Message Header and its components
0 The Message Properties
0 Standard properties
0 Application specific properties
o Provider specific properties
The Message Body
Text Message
Object Message
Stream Message
Map Message
0 Bytes Message
Message Selection
0 The syntax rules with examples
Summary

|
O O 0o

Chapter 6: JMS Messaging Models?????2????????2?????..2???7... 69
— Point to Point Messaging
0 The Components
0 An Example: Creating a JMS Phone
— Publish-Subscribe Messaging
0 The Components
0 An Example: Creating a JMS based Chat
- Request/Reply Messaging
0 Whatisit?
0 Modifying the point-to—point example to use Request/Reply
o0 Simulating Synchronous calls with Request/Reply
0 An Example: A Simple Compute Server based on Request/Reply
- Summary

Part Ill: IMS in the Real World

- Why use XML with JIMS
— An XML refresher
0 Why is XML so important?
0 Manipulating XML programmatically
- Backto JMS
0 The JmsXMLHelper class
0 Using the ImsXMLHelper class
- Summary

— The need for Spaces: A common problem in distributed computing

— Anintroduction to "Space-based" programming

- Using a JMS compliant queue to create a homegrown space — QSpace.
— Testing QSpace

— Creating a client/server Compute Server based on QSpace.
- Summary

Chapter 9: Creating a JMS protocol Handler????????????7..2?..2?7.. 181
- An overview of the Java Protocol Handler architecture
— The JMS Protocol Handler
o0 The JmsURLConnection class
— Creating Programs that use the JMS protocol handler

o A Sender
o A Receiver
- Summary

Chapter 10: Custom JSP tags for JMS?????????????2...2?2????7.. 210
— The need for custom tags
— The Custom Tags
0 The write tag
0 The read tag
— Testing it out
- Summary

Chapter 11: Using JMS with EJB 1.1??77??...2?2?2?????????2.2??7???.223
- Introduction
— JMS As A Resource
— Asynchronous EJB
0 The "Wrong" Architecture
0 A "Correct" Alternative Architecture
§ The AsyncDelegator
0 The Architecture in Action
§ The Backup EJB
§ Anexample client
§ Compiling and Running the pieces

Chapter 12: An introduction to the new MessageDriven Bean in EJB 2.0?7??7?7?7.251
— The Basics of Message—Driven beans
— Creating a Message—-driven bean
- The Container Contract
0 Details of the deployment descriptor
— The Lifecycle of a message—driven bean
- Summary

— Understanding the JMS Exceptions
0 Standard Exceptions
- Summary

Appendix B: A list of IMS Providers?????..22??2????????..2?2????267

To
my mother for her moral support,
my wife Mala for accepting my computer in our lives,
my son Sagar for being born,
and
God for everything else.

Acknowldgements

Although only the author’'s name appears on the cover of a book, in reality a book is the
combination of the direct and indirect efforts of many people. At this time, | would like to take the
opportunity to acknowledge at least a few of those people.

I would like to give special thanks to Charlie Flowers, Chief Technology Officer at Online Insight,
the company | work for. He has been instrumental throughout the entire project by providing me
tons of encouragement and excellent technical feedback. He has provided very valuable and
unbiased opinions that have helped shape the contents of the book. Thank you, Charlie. | would
also like to thank all my coworkers, especially Kurt Rush and Greg Corley for as they put it, "doing
all the work, while | wrote the book."

Thanks to the many people at Manning who made my vision of this book a reality. Thanks to
Susan Whittaker for guiding me through the initial proposal evaluation phase. Special thanks to
Marjan Bace for very patiently explaining to me the meaning of pedagogical writing. | would like to
thank Ted Kennedy, Mary Pierges, Lianna Wlasiuk, Syd Brown, and the entire editing team for
doing such a great job of making this book what it is today. | would also like to thank all the
reviewers for taking the time and effort of reviewing this book and providing extremely valuable
and unbiased feedback that has been instrumental in raising the quality of this book.

Finally, | would like to acknowledge my mother and wife for taking such good care of me
throughout this entire project, with little things such as reminding me to eat, or take a bath, or even
backup my work. My 21/2 year old has been especially understanding as well even though all he
knew was "pappa is studying."

About This Book

It is a well-known fact that organizations face tremendous business challenges in today’s Internet
age. The pace at which technology changes has become unmanageable and it is anybody’s guess
as to what the next hot technology is going to be. In a time of such uncertainty and opportunity,
businesses are willing to invest a lot of time and money to make sure that the work they do today
does not have to be thrown away tomorrow. The focus has shifted from portability (although still
important) to the much larger issue of interoperability both with legacy applications within the
organization and competing/cooperating applications external to the organization. Amongst all this
chaos, message—based products have proven to be a boon to software architects/developers
tasked with creating such interoperable software.

The introduction of IMS (Java Message Service, current version 1.0.2) by Sun represents a
revolution in the world of messaging. JMS allows message queue vendors to expose their features
in a portable way and hence increase their market size and at the same time reduces the
consumer’s risk of being tied to a specific vendor. Thus, JMS enables a win—win proposition for
both vendors and consumers. This is in tune with Sun’s "portability/interoperability" message. JMS
has gained support from industry leaders such as IBM, Oracle, Novell, Sybase, and many more as
a result of which there are tons of vendors offering JMS compliant message queuing products.
Even IBM offers JIMS compliant classes to interface with their world—class message queue,
MQSeries.

According to Sun Microsystems,

"JMS is a strategic technology for J2EE. JMS will work in concert with other technologies
to provide reliable, asynchronous communication between components in a distributed
computing environment.”

This places even more urgency on the enterprise developer to learn about this key technology.
Unfortunately [for the enterprise developer], there are not even a handful of books available on the
market that cover JMS in sufficient detail. | hope to fill that void with this book.

I have organized this book into three parts. The first part entitled "Getting Started" consists of 4
chapters that covers many different aspects of JIMS. Chapters 1 and 2 provide a gentle
introduction to JMS that will be useful to a wide range of people; from the highly technical to the
merely curious, while chapter 3 goes into detail about the various architectural pieces that make
up JMS and explain how they fit together. Chapter 4 explains complex issues such as
multithreading, transactions, security, etc.

The second part focuses on JMS messaging. Chapter 5 covers a central concept of JMS (and of
messaging systems in general) — messages. It goes into details about the IMS message structure
and the different types of messages. Chapter 6 covers the three messaging styles of JIMS in detail.

Finally, part three puts JMS in the context of the real world. Chapter 7 goes into the details of
using JMS with XML. Chapter 8 introduces the concept of space—based programming and
explains how it can be used to solve many of the problems associated with distributed
programming. | also go into details of using any JMS compliant product to create your own space
implementation. Chapter 9 uses the facade design pattern to help system architects ease the
transition of their development organizations to using JMS. Instead of creating a regular library, |
present an alternative technique based on Java’s protocol handler architecture. Chapter 10 takes
this facade one step further for JSP developers by creating JSP custom tags based on the JMS
protocol created in chapter 9. Chapters 11 and 12 focus on using JMS with EJB. Chapter 11
creates an entire framework for using JMS with EJB 1.1, while chapter 12 introduces the new
Message—driven beans in EJB 2.0.

My goal in this book is two fold. First, to educate the reader about the JMS specification and
second, to show how to use this knowledge to create architectural pieces/applications that are
vendor independent. Therefore, | will not go into any details about vendor specific features that are
not directly related to how JMS works. For example, one such feature is how different IMS
providers implement load balancing and fault tolerance. Every vendor implements this differently
and there are simply too many vendors out there to give justice to any one implementation.
Instead, my goal is to give you enough knowledge so as to let you make an informed decision
while evaluating and selecting a vendor. At the same time, there are aspects of load balancing and
fault tolerance that can be achieved by JMS alone irrespective of the vendor. | will concentrate on
these aspects. For example, the discussion in chapter 8 about space—based programming using
JMS presents an architecture that can be used for creating fault tolerant and naturally load
balanced distributed systems and will work with any JMS provider.

And finally, | hope that you enjoy reading this book as much as | have enjoyed writing it.

Chapter 1

An Introduction to the Java Message Service (JMS)

1. Setting the Stage

With the advent of the Internet, distributed computing has become even more important to
organizations seeking to create flexible and scalable enterprise applications. A distributed system
implies that different parts of the system can be distributed across different machines. These
machines may be in the same room or may be in different countries across the globe. The
machines are located where they are needed and the different parts of the distributed system are
on the machine that is most suited for that part of the system. Creating distributed systems is hard.
Think about how hard it is too get a (non—distributed i.e. single executable) complex application to
work on a single machine. Now think about the numerous factors that get introduced when the
same application is broken up into pieces and installed on multiple machines. Factors such as
disparate machine architectures (e.g. Intel Vs Alpha), disparate operating systems, network
bandwidth (i.e. the speed at which data can be transferred from one machine to the other), and the
multitude of reasons due to which the network can fail, all have to be considered now. In short, the
complexity of a distributed system is exponentially higher than the equivalent non-distributed one.

A distributed system itself can be logically divided into at least two pieces: the actual
business/functional code and the infrastructure/plumbing code. The business code pertains to the
actual function that you are trying to achieve and is independent of whether the system is
distributed or not. On the other hand, the infrastructure code is very dependent on whether the
system is distributed. If the system is not distributed this code almost disappears. In a distributed
system though, the infrastructure code can be extremely complex and may be even larger (in
proportion) than the actual business code. The primary objective of this infrastructure code is to
transfer data back and forth from one part of the distributed application to another. How this
transfer actually takes place depends on how the infrastructure code is implemented.

Note that the infrastructure code does not accomplish any business objective. Process
reengineering folks would use the term "non-value adding" work for this type of code (i.e. code
that does not provide value to the end user per se) and recommend eliminating this code
completely. As software developers we know that we cannot eliminate this code, so the next best
alternative is "code reuse". Luckily, since this infrastructure code is only dependent on the
distribution and not the business aspect of the system, it is very reusable. Not too ago, software
scientists spent a lot of time and effort creating their own distributed libraries (using sockets, for
example). These libraries required a lot of maintenance, debugging, and testing, and were a cause
of a lot of frustration in software organizations. The software community has matured a lot since
then and we now have standards such as DCOM from Microsoft, RMI from Sun, and CORBA from
OMG for creating distributed systems.

The infrastructure/plumbing code in the discussion above is commonly referred to as middleware,
which is what | will be calling it as well from now on. Based on the prior discussion, middleware
can be formally defined as:

"The wide range of software layered between applications and an operating system that
provide specialized services and interoperability between distributed applications."”

Or, in simpler terms, middleware is the software used to connect software applications to one
another. There are two fundamentally different types of middleware based on the approach used

by the middleware to transfer the data between the distributed software applications. These are
Remote Procedure Call (RPC) based middleware and Message-oriented Middleware (MOM).
Let's take a more detailed look at each one.

1.1 RPC Based Middleware

Consider two [good mannered] people talking over the phone. One person starts talking while the
other listens until the one talking finishes. The other person processes the information and
responds to the first person. All this time the first person has been patiently waiting for the second
person’s response. If you understand this scenario, you understand the gist of RPC based
middleware. That is, the software application that uses RPC based middleware to transfer data to
another software application has to wait (i.e. block, in technical terms) until the latter application is
done processing the data. Thus with this type of middleware, the communication proceeds in a
lock step, synchronized manner and the communicating processes are tightly coupled to one
another. Examples of such middleware include Java RMI, OMG’s CORBA or Microsoft DCOM.

1.2 The Almighty MOM?

Now let’s take a look at a radically different type of middleware, popularly known as MOM. Assume
that you've just written a letter to your friend and send it to him via snail mail (such as the U.S.
postal service). After sending the letter you obviously do not wait to receive his response to your
letter before doing anything else. Instead, you go on with your life. At some point you may get a
response from him, but in the meantime your actions did not depend upon this response. If you
followed this example, you understand the basics of how a MOM works. The idea behind a MOM
is extremely simple, which also leads to its power and widespread popularity. Basically, between
any two distributed parts of a system that need to communicate i.e. transfer data, you install a third
"intermediary"” system. Now instead of transferring data between each other, these distributed
parts transfer data to and from the intermediary. This intermediary is the MOM. In more technical
terms we have decoupled the communicating applications from one another. This is referred to as
asynchronous communication. Thus MOM enables asynchronous communication. There is
another aspect of MOM that makes it even more critical to successful distributed applications and
hence deserves attention. If for any reason the latter application is unreachable, such as due to a
network problem or simply because the application is currently not running, the MOM will take on
the burden of keeping track of the undeliverable messages, most likely by maintaining them in a
queue, and later deliver these messages when it becomes possible. This allows the applications in
a distributed system using MOM to have completely disjointed lifetimes. This is an important point
and deserves further explanation via an example.

Consider the following scenario: A salesperson is filling in customer orders on his laptop while
flying back to the corporate office in an airplane. The laptop is not connected to the central
computer and so the orders cannot be processed at that time. However, both the laptop and the
central computer are equipped with MOM software. So even though the laptop cannot
communicate with the central computer at the time the orders are being entered, the MOM on the
laptop keeps track of these "order messages". Once the salesperson is back in his office and
hooks up to the corporate intranet, the MOM on the laptop fires off these stored messages to the
MOM software on the central computer. The central computer receives and processes these
messages. This is a classic example of where the facilities provided by the MOM are needed. The
MOM takes care that the messages are not lost, or delivered out of sequence, or duplicated.

Remember

The salesperson example illustrates a major difference between RPC and MOM based
middleware. In RPC, applications are coupled in time i.e. the applications must have
overlapping lifecycles in order to be able to communicate, while in the case of MOM,
the applications can/may have completely disjointed lifecycles and in most cases don’t
have any knowledge of one another.

The additional flexibility and fault-tolerance offered by leveraging a MOM does not come for free
though, as it involves more work for the application developers. Having said that, the extra effort is
well worth it in most cases. Note that | say most, not all cases since the choice of which
middleware to use is very application/domain specific. For example, if the application absolutely
cannot proceed without a response then RPC based middleware makes more sense. Not only
may this reduce programming complexity, but it also may perform better by avoiding the overhead
associated with MOM.

2. Introducing JMS

2.1 What is it?
So where does JMS fit into all this? It will all be clear in a moment, but first let me present a
definition of JIMS.

"JMS is a specification that defines a set of interfaces and associated semantics, which
allow applications written in Java to access the services of any JMS compliant Message
MOM product."

Quite a mouthful!

Dissecting this definition reveals the following:

« JMS is only a specification and not an actual product implementation.

e Since JMS is a specification, it only defines the interfaces and their semantics.

e These interfaces are used to interface with any JMS compliant MOM product. Thus,
JMS is only useful if there are any compliant MOMs out there. Fortunately there are
plenty of compliant MOM products available in the market, including MQSeries from
IBM, SonicMQ from Progress Software, FioranoMQ from Fiorano, and many more. A
JMS compliant MOM is known as a JMS provider.

* Only applications written in Java can use JMS to access the JMS compliant MOM.

Thus, put more simply,
"JMS is an API used to access the facilities of a MOM from a Java application."

2.2 And why was it created?

With all the power that messaging systems have to offer (as described in section 1.2), it is not
surprising that there are many such systems available in the market, each one with its own set of
advantages and disadvantages and some more popular than others. Examples of the more
popular messaging products include IBM’s MQSeries and TIBCO’s Rendezvous. That's the good

news, since competition is supposed to bring out the best in terms of price and quality. Here's the
sad news: each product has its own interfaces and APIs and behaves slightly differently than
others, even for [supposedly] similar features.

Consider the following scenario:

A client developing an enterprise application identifies the need for a messaging product and
creates a list of requirements that must be met by a vendor. After evaluating several of the popular
choices available in the market, the client selects a vendor that best meets their requirements. The
client integrates the messaging product into its offering. Then, a year later, another vendor with a
better messaging product comes along or a new requirement comes up that the existing
messaging product will not [easily] satisfy. Does this sound familiar? In most cases, this is just
considered tough luck (or is this Murphy’s Law?). The client cannot change vendors because it is
too tightly coupled with the vendor, but this is also why a vendor cannot get new clients. Which
came first, the chicken or the egg?

This is where JMS comes into the picture. JMS attempts to solve these problems by offering a
uniform set of interfaces and associated semantics for messaging systems. In essence, JMS
allows clients to get a uniform view of all IMS compliant messaging product providers, or JIMS
providers, as shown in figure 1.

Client J

¢ Messages

Java Message Service (JMS) AP

|BM

and others ...

Sun Java
Message Queue

a
=
=
=
]
-
=
L

W Series
Redezvous
Frogress
Sonichl G

Figure 1: The JMS Architecture’

Figure 1 illustrates how the JMS allows message queue vendors to expose their features in a
portable way and hence increase their market size and at the same time reduces the consumer’s
risk of being tied to a specific vendor. In this figure the client can use MQSeries, Rendezvous,
SonicMQ, or any other IMS compliant provider without any change at all. Thus, JMS enables a
win—-win proposition for both vendors and consumers.

It is important to point out that JMS is not a specification that a few "geeks" at Sun Microsystems
came up with one late night after lots of coffee. On the contrary, JMS is the result of many industry

! TIBCO Rendezvous does not currently support IMS, but plans are underway to support IMSin early 2001
along with support for EJB2.0

leaders working together over an extended period, with a common goal in mind: to achieve a
uniform enterprise level messaging API. A number of important industry players, such as Allaire,
BEA systems, Fiorano Software, Progress Software, etc. initially collaborated with Sun to define
the first draft of the JMS specification. In addition, many comments were received from other
companies, government and educational organizations, and others during the three—month public
review period. That is one of the key reasons of JMS’s widespread acceptance; the other being
that it is really well defined, as you'll see in this book. Currently many industry leaders, such as
Oracle, Sybase, Novell, IBM, etc, endorse the JMS specification. See appendix B for a complete
list of vendors providing JMS compliant messaging products.

It is also important to understand that JIMS does not represent [or claim to be] the union of all
features available across all messaging products in the market. That would be too impractical. The
specification would be too bulky and cumbersome for any one vendor to support. Plus, it would be
too complicated for many developers to [quickly] comprehend in this "Internet” time. Most
importantly, it would result in message products that are extremely heavyweight and that support
too many features for most common applications.

On the other hand, JMS is not merely an intersection of all common features of existing
messaging products in the market either. Instead JMS defines a common set of enterprise
messaging concepts and facilities that are crucial to implementing sophisticated messaging
applications. In this respect JMS is analogous to JDBC. Just as JDBC allows uniform access to
many different relational databases, JMS allows uniform access to many different messaging
products.

2.3 JMS is part of the Java 2 Enterprise Edition (J2EE)

JMS itself is a very powerful specification, but as part of the J2EE platform its power increases
exponentially. Remember the adage "The sum is greater than the parts"? Well, it applies here as
well. When Java first came out in the mid 90’s, it was simply a language that enabled software
developers to create applications that could run on any platform that had a Java virtual machine.
Since then Java has evolved tremendously, so much so that it is no longer just a language but a
platform that supports application development. This platform, called the Java 2 Platform,
Enterprise Edition (J2EE), enables the creation of solutions for developing, deploying and
managing multi-tier server—centric applications. J2EE utilizes the Java 2 Platform, Standard
Edition to extend a complete, scalable, stable, secure, and fast Java platform to the enterprise
level. It delivers value to the enterprise by enabling a platform, which significantly reduces the cost
and complexity of developing multi-tier solutions, resulting in services that can be rapidly deployed
and easily enhanced. Without going into too much detail, J2EE provides the following benefits:

? A unified platform for building, deploying and managing enterprise—class software without
locking users into a vendor specific-architecture. This results in less maintenance and
upgrade headache for IT and is key to the success of any enterprise—class application.

? A platform that will allow enterprise—class application the ability to run anywhere. This is
because the platform is based on Java and the "Write Once, Run Anywhere" philosophy?.

? A platform with a complete range of readily available enterprise—class services. Think of
an enterprise application developer as an expert craftsman with his toolkit of available
tools. That's what J2EE provides — a toolkit to the enterprise developer. As I'll discuss
below JMS is one of these tools/services.

? Asingle easy-to-learn blueprint programming model for J2EE. The J2EE Blueprints are
the best practices philosophy for the design and building of J2EE—based applications.
These best practices are derived from years of experience from the best developers in the
industry. These design guidelines provide two important things.

o First, they provide the philosophy of building n—tier applications on the Java 2
platform.

2 |t should probably be "Write Once, Test Everywhere, and then Run Anywhere", but | guess that doesn’t
have quite the samering to it, doesit?

0 Second, they provide a set of design patterns for designing these applications, as
well as a set of examples or recipes on how to build the applications.

What's most relevant to us though, is the fact that JMS is a strategic component of the J2EE
platform. Developers creating applications within the J2EE platform can leverage the power of
JMS along with other powerful and strategic J2EE technologies, which include Enterprise
JavaBeans (EJB), JavaServer Pages (JSP), Java Naming and Directory Interface (JNDI), Java
Transaction API (JTA), Java Database Connectivity (JDBC), J2EE Connector, Servlets, XML, and
CORBA. The strategic role that JMS plays in the J2EE platform is even more evident with the EJB
2.0 specification, which supports the integration of JMS in the following two ways:

* As aresource available to beans
This capability has actually existed since EJB 1.1. Both session and entity beans are
RPC-based components, which is an excellent architecture for assembling
transactional components. In some cases, however, as we've already discussed
earlier, the synchronous nature of RPC becomes a "handicap”, which is precisely why
JMS was made available as a resource to these beans. Using JMS providers, EJB
developers could overcome this handicap and simulate a bean with asynchronous
calls. | will discuss this in great detail in chapter 11.

e AsalMessageDrivenBean.
As is common with all initial specifications, the creators of the EJB specification have
addressed the "synchronous handicap" identified above in the EJB 2.0 specification.
In order to provide a standard solution to this problem, EJB 2.0 has introduced a
completely new enterprise bean type, the MessageDr i venBean, which is designed
specifically to handle incoming JMS messages. | will discuss Message—driven beans
in detail in chapter 12.

2.4 Common Misconceptions about JMS

Till now I've discussed what JMS is and why it is so important to any enterprise level software
developer striving to create applications with the J2EE platform or otherwise. Equally important
however, is a discussion on what JMS is not. Like all other acronyms in the technology field, IMS
has acquired its own set of myths and misconceptions over time. It is very important that these
misconceptions get cleared/busted early on so as to facilitate the learning of the advanced
concepts in the later chapters. In fact, | think it is important enough to warrant a separate section in
this chapter. In this section, | will attempt to clear up nine of the most common misconceptions
associated with the JMS specification.

? Misconception #1: JMS is just another Mail API.

By now it must be obvious that JMS is not another Mail API. Sun already has that covered with the
JavaMail API. The JavaMail API provides a set of abstract classes that models a mail system,
which is meant to provide a platform independent and protocol independent framework to build
Java-based mail and messaging applications. That does not mean that you could not develop a
mail-based application, such as pine, by using a JMS compliant messaging product, but the
benefits to be gained by doing so are questionable. After all why go through all the trouble of doing
with JMS what the JavaMail API already does?

? Misconception #2: JMS is an actual messaging product.

This is a big one. JMS is a specification and not an actual product. A JMS provider such as IBM,
Progress Software, or even Sun provides a messaging product that implements the specification.
As discussed previously, JMS allows MOM vendors to expose their features in a portable way and
hence increase their market size and at the same time reduces the consumer’s risk of being tied to
a specific vendor.

? Misconception #3: JMS specifies a distributed version of the Java event model.

Java defines a very elegant event model that can be used by objects within the same VM. JMS is
not a distributed version of this Java event model. In fact, | would not consider JMS an event
model at all, although it can be used to simulate one, with some work of course.

? Misconception #4: JMS offers synchronous messaging and notification of message delivery.

JMS does not standardize synchronous message delivery and/or notification of delivery, such as
by defining a set of system messages. Let’s think about synchronous delivery for a moment. If
synchronous delivery is really required, using RPC may be a more desirable solution. After all that
is exactly what RPC does. A JMS compliant messaging product can be made to simulate
synchronous delivery, but again through a lot of hard work that bypasses the benefits bestowed by
JMS in the first place. As far as notification of delivery, applications using JMS providers are free
to define their own application specific acknowledgement messages, if they desire. Such a feature

iS defined in the specification itself.
? Misconception #5: JMS is a replacement for the CORBA Notification service.

JMS is not a replacement for the CORBA Notification service. For example, JMS does not offer
subscription notification. This is a feature available in the CORBA Notification service. If this
feature were available in the JMS, it would allow publishers of messages to know if there are
interested subscribers for the message. Intelligent publishers could then use this information to
only publish the message if there were any interested subscribers. However, using this feature
may create problems in many situations involving the use of messaging products. Let’s go back to
our example of the salesperson filling in orders offline. Since the salesperson is offline, there
would be no subscribers for the "order" messages, but yet they still need to be published. So
instead of complicating matters by specifying a subscription notification feature, the JIMS
specification leaves it up to each JMS provider to minimize the overhead associated with
messages for unsubscribed topics. In a similar vein, the JMS does not specify a repository for
storing message type definitions, as available in with the CORBA Notification service. A detailed
discussion of the CORBA notification service is beyond the scope of this book. Please refer to the
references at the end of the book for more information about this service.

? Misconception #6: JMS specifies elaborate load balancing and fault-tolerance schemes.

JMS does not specify any load balancing/fault-tolerance schemes. These features are left up to
each individual JMS provider. Therefore, providers are not required to support these features.
Most likely such providers will not survive long in today’s competitive market without including
these features in their product. The point to remember here is that these features will be vendor
specific.

? Misconception #7: JIMS defines a complete API for administering a messaging product

JMS does not provide an API for administering a messaging product. One possible reason is that
providers may have their own unique features and setup requirements, which JMS cannot predict.
However, JMS does include two administrable objects, which | will discuss in chapter 2. Yet no
API for administering these objects is included either; the reason for which will become clear in
chapter 2.

? Misconception #8: JMS defines a protocol for secure access to messages.

JMS does not specify an API for controlling the privacy or integrity of messages. It does not
attempt to define [yet another] access control/authentication/authorization protocol. Instead,

individual providers are free to implement their own security features. Once again, most vendors
will implement such features in their product, even if it is just to be competitive in the market. The
point to remember is that as in the case of load balancing and fault tolerance features, these
features will also be vendor specific.

? Misconception #9: JMS defines a format in which the message is transmitted over the wire.

JMS does not define the wire protocol for messaging. For example, while the OMG has specified
the General Inter—-ORB Protocol (GIOP) and its mapping on TCP/IP, the Internet Inter—-ORB
Protocol (110OP) for CORBA, Sun has done no such thing for JIMS.

3. Summary

In this chapter, we looked at what the JMS specification is and what it's not. Remember, JMS is
not an actual product implementation, rather it is simply an API specification that other MOMs
comply with. These compliant MOMs are called JMS providers. Furthermore, JMS selectively
specifies only the most critical pieces required for interoperability between messaging products.
This encourages vendors to embrace the JMS specification allowing them to differentiate
themselves from others based on features such as load balancing, fault-tolerance, security, and
administrative ease.

We also looked at how the JMS is related to other key Java technologies and why it's so
important. To recap, JMS is compelling for four main reasons:

? It is the first enterprise messaging API that has achieved wide industry support.

? It simplifies the development of enterprise applications by providing standard messaging
concepts and conventions that apply across a wide range of enterprise messaging
systems.

? It leverages existing, enterprise—proven messaging systems.

? ltis an integral part of the J2EE platform where it will work in concert with other key Java
technologies such as EJB, JSP, JNDI, JTA, JDBC, J2EE Connector, Servlets, XML, and
CORBA to provide reliable, asynchronous communication between components in a
distributed computing environment.

Finally, we also busted nine common misconceptions about JMS. It is important that these
misconceptions get cleared early on to facilitate the learning of the advanced concepts in later
chapters.

In the next chapter | will discuss the basic pieces of the JMS architecture and how they fit together.
We will also get our hands dirty with some sample applications that use the different messaging
styles in JMS.

Additional Material for this chapter (Note this is not a heading)

Sidebar: Characteristics of a Message based system
A message—based system i.e. a system that uses a MOM exhibits three key
characteristics, which are identified and explained below:

e Scalability
Most messaging products will buffer messages until they can be delivered or the
receiver is ready to receive the message. Thus, receivers can service the
requests at their own [steady] pace without getting overloaded with work all at
once.

* Reliability
In most case message based systems are more reliable than synchronous RPC
based systems, because as mentioned above most messaging products will
store messages until they are successfully delivered.

* Real-time enough
Unless you're designing a system that prevents nuclear meltdowns, it is more
than likely that a message—based system will be real-time enough to suit your
needs. Especially with Internet based e—commerce applications where the
network lag largely overshadows any but the most significant processing times,
messaging systems offer more than adequate performance.

S
A popular application of MOM includes integrafing "legacy” systems with one another to facilitate
efficient and almost real-time sharing of data among these systems. This process of tying together
multiple enterprise—level applications to support the flow of information is known as Enterprise
Application Integration, or EAI. EAI is about integration and interoperability, two key buzzwords of
this Internet era. It's not so difficult to see why. Pick your favorite e-commerce (B2B or B2C) site
and think about all it does (or should do). Ideally, it should take you through the entire shopping
experience. For example, it should

* Help you determine your true needs and requirements

» Based on these needs and requirements, it should search for all available items are

appropriate for you i.e. make product recommendations.

» Help you compare and evaluate your different options.

* Take you through the process of placing your order.

e Letyou pay the bill in a way that is convenient to you.

» Letyou track the order status

» Provide after sales customer support.

How the site integrates these activities is a major part of the site’s value proposition to the
customer (and market). Integrating these activities is not an easy task. Traditionally, each activity
has been supported by its own application with its own database. Some of these systems have
been in use for many years. Now vendors are forced to integrate these systems, or at least the
data available from these systems to better serve the customer in an increasingly customer—
focused market. The Internet has put the power back into the consumer’s hands where the
competitor is only one click away.

One approach to EAIl is to create a point—to—point solution, where each system knows how to
communicate with all the systems that it needs to share data with. It is easy to see that such a
system would become unmanageable with a large number of systems. A better solution is to use a
message brokering architecture as shown in figure 1.

As seen in figure 2, the message broker is essentially a MOM with built in intelligence for routing
and transforming messages. A message broker may have a sophisticated rules engine allowing for
the creation of workflow type information routing sequences. Each system publishes "data events"

in a well-known format® that other systems can subscribe to. The events that each system
publishes are documented and made available with the system documentation. Any number of
other systems may subscribe to such events. Such an architecture is much more manageable with
a large number of systems.

Shipping

Order Entry

Billing

Message Broker

Irventary

Purchasing Mgt

Legend

Data Event
‘1

Figure 2: EAI using a message brokering architecture

® Thisiswhere XML comes into the picture. | will talk more about XML in chapter 7.

Chapter 2

Getting Down and Dirty with JIMS

Chapter 1 introduced you to the very basics of JMS that would allow you to talk intelligebly about
JMS in a cocktail party. In this chapter, | am going to take you a step deeper by getting your hands
dirty with some actual JMS code.

1. Middleware revisited

In the previous chapter, | spent a great deal of time discussing middleware. Let’s take another look
at it. Remember there are two types of middleware depending on how the data gets transferred.
The middleware of interest to us in this book is message-oriented middleware (MOM) because as
| discussed in the previous chapter that’s the type of middleware that JMS defines access to.
Figure 1 shows that there are two different types of MOM: point—-to—point and publish—-and-
subscribe.

Middleware

RPC MOM

Point-to-Point Publish-and-Subscribe

Figure 1: Middleware types

Both types of MOM are popular in the market. Hence, JMS supports both these types. JMS refers
to these as messaging styles. Thus, | can say that JMS supports two messaging styles: point-to—
point and publish—and-subscribe. Let's take a more detailed look at both of these styles.

11 The Point-to-point messaging style

In this model, a MOM is used by two applications to communicate with each other, often as an
asynchronous replacement for remote procedure calls (RPC). What exactly do | mean by an
asynchronous replacement for RPC? Remember, from our discussion in chapter 1 that RPC is the
form of middleware in which all communication between the two applications occurs in a
synchronized, lock step manner. But, what if the two applications do not or cannot communicate in
this manner. The alternative is to use a MOM that supports the point-to—point messaging style in

place of RPC. The two applications still communicate with each other, but this communication is
asynchronous. The example of writing a letter to a friend in chapter 1 was an example of a point-
to—point messaging style.

1.2 The Publish-and-subscribe messaging style

In this model multiple applications connect to the MOM as either publishers, which are producers
of messages, or subscribers, which are consumers of messages. An important point of difference
between the two styles is that a point-to—point system is typically either a one-to-one
system, which means one message sender talking to one message receiver, or it is a a many-
to—one system, which means more than one senders are talking to one receiver. On the other
hand, publish—and-subscribe systems are typically many-to—-many systems, which means
that there could be one or more publishers talking to one or more subscribers at a time.

Publish—and-subscribe systems are very popular in "event-based" systems. An event is an
indication of an interesting occurrence in a system that is "published" by that system. Other
software applications can "subscribe" for this event. In an event-based system, publishers and
subscribers are unaware of and independent of each other. Therefore, a major application of such
event-based system is in integrating "legacy" systems to "next generation" systems, i.e. in
enterprise application integration (EAI). | discussed the role of messaging in EAIl in chapter 1 in the
sidebar "MOM and EAI".

1.3 JMS support of the messaging styles

As | mentioned above JMS supports both these styles. However, not all MOMs support both these
messaging styles. Therefore, JMS provides a separate domain for each of these styles and
defines compliance for each domain. This means that a MOM can be JMS compliant even if it
does not support both messaging styles. | will discuss how JMS supports both these styles in
detail chapter 6. JMS makes a clear distinction between the point-to—point and publish—-and-
subscribe messaging styles. This means that before a client can use a JMS provider to send and
receive messages, the client must decide which messaging style it wants to use. This decision
shapes nearly every aspect of how the client system interacts with JMS from then on.

2. Understanding the Players in JIMS

Before, we actually look at some basic programs that use JMS, let's look at the primary concepts
that all IMS programmers need to know. In the following discussion | will refer to programs that
use a JMS provider as JMS clients.

2.1 "Connections" and "Connection Factories"

At the very core of JMS, there is the concept of a "connection." A connection represents a logical
connection to the JMS provider. It is intuitively obvious that one of the first things a JMS client
must do is obtain a connection to the JMS provider. To obtain this connection each JMS provider
provides a connection factory®. The connection factory is interesting since even though it is an
integral part of IMS, JMS does not standardize what information the connection factory
encapsulates or how a client gets the connection factory from a JMS provider. | will discuss the
reason for this in the next chapter. There are two types of connection factories: one for point-to-
point and another for publish—and-subscribe. Based on the desired messaging style, the client
obtains the appropriate connection factory and connects to the JMS provider (all of which can be
referred to as "obtaining a connection").

2.2 "Sessions"

Once the client has a connection to the JMS provider the next step is to start a new session. A
"session" is a client’s own private view of the connection. Each connection may have many
sessions in progress at the same time. Just as a connection is necessary to communicate with a

4 Asin the physica world, afactory isaproducer of well known "things'. For more details on the factory
design pattern refer to "Elements of Reusable Object—Oriented Software" by Eric Gamma, et al.

JMS provider, a session is necessary to communicate with the connection. A simple analogy might
help here. Consider the Connection analogous to the main telephone line that serves your entire
neighborhood. A "session" would then correlate to your specific phone call that goes across that
line.

2.3 "Destinations"

In any message—based system, regardless of the messaging style being used, each message has
to be sent somewhere. This "somewhere" is known as a "destination" in JMS lingo. Since
messages are sent to a destination, messages are received from a destination as well. IMS does
not standardize what information a destination encapsulates. The next chapter will discuss why.
JMS does specify how a destination is obtained by a user of the messaging system, which is
through a session (discussed above). There are two types of destinations. The type of destination
used to send and receive messages depends on the messaging style being used. For point-to-
point messaging the destination is called a "queue" and for publish—and-subscribe messaging it is
called a "topic". Accordingly, a session that was created for the point-to—point messaging style
can only be used to get a queue. Similarly a session that was created for the publish—and—
subscribe messaging style can only be used to get a topic.

Once we have obtained a Connection, used it to obtain a Session, and then used the Session to
obtain a Destination, we are ready to actually send and receive messages. However, the session
itself cannot be used to send and receive messages. Instead, the Session acts as a factory that
can be used to create senders and receivers that are used for sending and receiving messages.
The next section will help clarify these concepts with the help of some example programs.

3. Hello World — JMS Style?

Although the process of using a JMS provider is fairly straightforward, the number of concepts
involved can be overwhelming at first. In order to give you a better feel of what's involved in
creating a JMS client and using a JMS provider, | will go through two extremely simple "Hello
World" examples — one for each messaging style. The JMS provider that | will be using is Sun
Microsystems’s Java Message Queue product. An evaluation version is available for download at
Sun’s website. | have installed this product in my "E:\Program Files" directory.

3.1 A "Hello World" point-to—point example
A point-to—point system consists of one or more sender programs and at most one receiver.

3.1.1 The Hello World Sender

First let's look at a sender program. All IMS related classes are located in the j avax. j ns
package. Since, we are interested in the point-to—point messaging style, | obtain Sun’s connection
factory for this style, which | then use to create a connection. This is shown below.

/1 Get a connection factory for the point-to-point style
/1 i.e. a queue connection factory.

QueueConnecti onFact ory myConnecti onFactory =

new com sun. messagi ng. QueueConnecti onFactory();

/1 Use myConnectionFactory to get a queue connection
QueueConnection nyConnection = _
nmyConnect i onFact ory. cr eat eQueueConnection();

Notice that the class names for the connection factory and connection begin with "Queue." JMS
follows a naming convention in which the name of any class used with the point—-to—point
messaging style begins with "Queue". Similarly the name of any class used with the publish-and—
subscribe style begins with "Topic".

The connection is used to create a session as follows.

/1 Use myConnection to create a queue session
QueueSessi on nySession = .
nmyConnecti on. cr eat eQueueSessi on(fal se, 1) ;

The session is used to get the queue called "HelloWorldQueue" as shown below.

/1 Use nmySession to get the queue
Queue myQueue = nySessi on. creat eQueue(" Hel | oWor | dQueue") ;

Finally, the session is also used to create a sender that will be used to send a message. When the
sender is created, it is told which queue to send the messages to. This is shown below.

/1 Use nmySession to create a sender
QueueSender nySender = mySession. creat eSender (nyQueue) ;

The "Hello World" message is sent using the send method on the sender as follows:

/1l Create the Hell oWorl d nessage

Text Message m = nySessi on. cr eat eText Message() ;
m set Text ("Hello World");

/1 Use nySender to send the nessage

nmy Sender . send(m ;

Note that the session is also used to create an empty message. In other words, in addition to
being a factory for creating senders and receivers, the session is a factory for producing
messages as well.

The complete implementation of the sender program follows:

/1l The Hello World Sender Program Hell oSender.java
i mport javax.jms.*;

public class Hell oSender E
public static void main(String[] args) throws Exception

try {
/1 JIMS setup work.

/1 Get a connection factory for the point-to-point style
/1 i.e. a queue connection factory.
QueueConnecti onFactory myConnecti onFactory =

new com sun. messagi ng. QueueConnecti onFactory();

/1 Use myConnectionFactory to get a queue connection
QueueConnection nyConnection = .
nyConnect i onFact ory. cr eat eQueueConnection();

/1 Use myConnection to create a queue session
QueueSessi on mySessi on =
nmyConnect i on. cr eat eQueueSessi on(fal se, 1) ;

/1 Use nySession to get the queue
Queue nmyQueue = nySessi on. creat eQueue(" Hel | oWor | dQueue");

/1 Use nmySession to create a sender
QueueSender nySender = mySession. creat eSender (nyQueue) ;

/1 Start the connection
nmyConnection.start();

/!l Create the Hell oWorl d nessage
Text Message m = nySessi on. cr eat eText Message() ;
m set Text ("Hello World");

/1 Use nmySender to send the nessage
nmySender . send(m ;

/[Done.

/1 Need to clean up
nySessi on. cl ose();
nmyConnect i on. cl ose();

}
catch(Exception e) {
e.printStackTrace();

}
}

3.1.2 The Hello World Receiver

The receiver is very similar to the sender program. In fact all the work required to obtain a
connection factory, the connection, the session, and the queue is exactly the same. In this
program, however, the session is used to create a receiver instead of a sender. This receiver is
told which queue to receive messages from when it is created. This is shown below:

/1 Use nmySession to create a receiver
QueueRecei ver nyRecei ver = nySession. creat eRecei ver (myQueue) ;

To actually receive a message, the program calls the receive method as follows:
Text Message m = (Text Message) nyRecei ver.receive();

Once a message is received, its contents are printed to standard out. The complete program is
shown below. The differences between this program and the sender are highlighted in bold face.

/1 The Hello World Receiver Program Hell oReceiver.java
i mport javax.jms.*;

public class Hell oRecei ver
public static void main(String[] args) throws Exception

try {
/1 JMS setup work.

/1 Get a connection factory for the point-to-point style
/1 i.e. a queue connection factory.
QueueConnecti onFactory nmyConnectionFactory =

new com sun. messagi ng. QueueConnecti onFactory();

/1 Use myConnectionFactory to get a queue connection
QueueConnection nyConnection = .
nyConnect i onFact ory. cr eat eQueueConnection();

/1 Use myConnection to create a queue session
QueueSessi on nySession = _
nmyConnect i on. cr eat eQueueSessi on(fal se, 1) ;

/1 Use nySession to get the queue
Queue nmyQueue = nySessi on. creat eQueue(" Hel | oWor | dQueue") ;

/1 Use nmySession to create a receiver
QueueRecei ver nyRecei ver = nySessi on. creat eRecei ver (myQueue) ;

/1 Start the connection
myConnection.start();

/1 Wait for the Hello World nmessage
/] Use the receiver and wait forever until the
/1l nmessage arrives

Text Message m = (Text Message) nyRecei ver.receive();

/1 Display the nessage
Systemout. println("Received the nessage: " + mgetText());

/1 Done.

/1 Need to clean up
nmySessi on. cl ose();
nmyConnection. cl ose();

}
catch(Exception e) {
e.printStackTrace();

}
}

3.2 A "Hello World" publish—-and-subscribe example

Next, it's time to see how to use the publish—and-subscribe message style in IMS. As you'll
discover, it's not very different than using the point—-to—point style. A publish—and-subscribe
system consists of one or more publisher and subscriber programs.

3.2.1 The Hello World Publisher

First let's look at a publisher program. As before, all JIMS related classes are located in the

j avax. j ns package. Since in this case we're interested in the publish—and-subscribe messaging
style, | obtain Sun’s connection factory for this style, which | then use to create a connection. This
is shown below.

/1 Get a connection factory for the publish-and-subscribe style
I/ i.e. a topic connection factory.

Topi cConnect i onFactory myConnecti onFactory =

new com sun. messagi ng. Topi cConnecti onFactory();

/1 Use myConnectionFactory to get a Topic connection

Topi cConnecti on nmyConnection = .
nyConnect i onFact ory. cr eat eTopi cConnection();

Earlier | discussed the naming convention followed by JMS w.r.t class names. Observe that the
class names for the connection factory and connection begin with "Topic."

The connection is used to create a session as follows.

/1 Use myConnection to create a Topi c session
Topi cSessi on nmySession =
nmyConnecti on. creat eTopi cSessi on(fal se, 1);

The session is used to get the topic called "HelloWorldTopic" as shown below.

/1 Use nmySession to get the Topic
Topi ¢ nyTopi c = nySessi on. creat eTopi c("Hel | oWorl dTopic");

Finally, the session is also used to create a publisher that will be used to publish the "Hello World"
message. When the publisher is created, it is told which topic to publish the messages to. This is
shown below.

/1 Use n?/Sessi on to create a publisher for myTopic
Topi cPubl i sher myPubl i sher = nySessi on. creat ePubl i sher (nyTopic);

The "Hello World" message is published using the publ i sh method as follows:

/!l Create the Hell oWorl d nessage
Text Message m = sessi on. cr eat eText Message() ;

m set Text ("Hello World");
/1 Use Publ i sher to publish the nessage
nyPubl i sher. publish(m;

The complete implementation of the publisher program follows:

/1 The Hello World Publisher Program HelloPublisher.java
i mport javax.jms.*;

public class Hell oPublisher
public static void main(String[] args) throws Exception

try {
/1 JIMS setup work.

/1 Get a connection factory for the
/'l publish-and-subscribe style
/1 1.e. a topic connection factory.
Topi cConnect i onFactory nyConnecti onFactory =
new com sun. messagi ng. Topi cConnecti onFactory();

/1 Use myConnectionFactory to get a Topic connection
Topi cConnection nyConnection = _
nmyConnect i onFact ory. cr eat eTopi cConnection();

/1 Use myConnection to create a Topic session
Topi cSessi on nmySession =
nmyConnecti on. creat eTopi cSessi on(fal se, 1);

/1l Use mySession to get the Topic
Topi ¢ nyTopi c = nySessi on. creat eTopi c("Hel | oWorl dTopic");

/1 Use nmySession to create a publisher for myTopic
Topi cPubl i sher myPubl i sher = nySessi on. creat ePubl i sher (nmyTopic);

[l Start the connection
nmyConnection.start();

/1l Create the Hell oWworl d nessage
Text Message m = nySessi on. cr eat eText Message() ;
m set Text ("Hello World");

/1 Use Publ i sher to publish the nessage
nyPubl i sher. publish(m;

/1 Done.

/1 Need to clean up
nmySessi on. cl ose();
nmyConnection. cl ose();

}
catch(Exception e) {
e.printStackTrace();

}
}

3.2.2 The Hello World Subscriber

The subscriber is very similar to the publisher program. In fact all the work required to obtain a
connection factory, the connection, the session, and the topic is exactly the same. In this program,
however, the session is used to create a message subscriber instead of a message publisher.
This message subscriber is told which topic to subscribe messages from when it is created. This is
shown below:

/1 Use mySession to create a subscriber
Topi cSubscri ber nySubscriber =

nySessi on. cr eat eSubscri ber (myTopi ¢) ;

To actually receive a message, the program calls the r ecei ve method. Yes, it is same method
that the message receiver called in the receiver program in the point—-to—point example above.
There is no subscri be method. This is shown below.

Text Message m = (Text Message) nySubscri ber.receive();

Once a message is received, its contents are printed to standard out. The complete program is
shown below. The differences between this program and the publisher are highlighted in bold face.

/1 The Hello World Subscriber Program Hell oSubscriber.java
i mport javax.jms.*;

public class Hell oSubscri ber
public static void main(String[] args) throws Exception

try {
/1 JIMS setup work.

/1 Get a connection factory for the
/'l publish-and-subscribe style
/1 1.e. a topic connection factory.
Topi cConnect 1 onFact ory myConnecti onFactory =
new com sun. messagi ng. Topi cConnecti onFactory();

/1 Use nmyConnectionFactory to get a Topic connection
Topi cConnection nyConnection = _
nmyConnect i onFact ory. cr eat eTopi cConnection();

/1 Use myConnection to create a Topi c session
Topi cSessi on nmySession =
nmyConnect i on. cr eat eTopi cSessi on(fal se, 1) ;

/1 Use nmySession to get the Topic
Topi ¢ nyTopi c = nySessi on. creat eTopi c("Hel | oWor | dTopic");

/1 Use nySession to create a subscriber
Topi cSubscri ber nySubscriber =
nmySessi on. cr eat eSubscri ber (myTopi c) ;

[l Start the connection
nmyConnection.start();

/1 Wait for the Hello World nmessage

/] Use the receiver and wait forever until the

/1l nmessage arrives

Text Message m = (Text Message) nySubscri ber.receive();

/1 Display the message
Systemout. println("Received the nessage: " + mgetText());

/[Done.

/1 Need to clean up
nmySessi on. cl ose();
nmyConnection. cl ose();

}
catch(Exception e)
e.printStackTrace();

4. Compiling and Running the Programs

4.1 Setting up the environment
Copy the following into a batch file called setenv.bat.

REM Setup the classpath for Java Message Queue

set JMQ HOMVE=E: \ Program Fi | es\ JavaMessageQueuel. 0

set

CLASSPATH=%CLASSPATHY %9 MQ _ HOVE% | i b\j ns. jar; %M HOVE% |i b\j ng. j ar; %M
_HOVE% 1'i b\ j ngadni n. j ar

Remember, | have installed Sun’s Java Message Queue in the "E:\Program Files" directory. You
must adjust your JM5_HOVE environment variable to reflect your installation directory.

4.2 Compiling the pieces

From a dos prompt in the directory that contains all four programs (HelloSender.java,
HelloReceiver.java, HelloPublisher.java, and HelloSubscriber.java) execute the following
commands:

setenv
javac *.java

Here set env is the same batch file created above.

4.3 Start the Java Message Queue Router

From another dos box in the bin directory of the Java Message Queue installation, start the Java
Message Queue router as shown below. The router is a component that is specific to Sun’s Java
Message Queue and is responsible for routing the messages, providing fault tolerance, security,
load balancing, etc.

set JAVA HOVE=C.\ Program Fil es\j dk1. 2.2
set JMQ HOMVE=E:\ Program Fi | es\ JavaMessageQueuel. 0
i router

Once again adjust the environment variables JAVA HOVE and JMQ_HOVE to reflect your JDK and
Java Message Queue installation directories.

4.4 Running the Sender and Receiver
From a dos box in the same directory as the class files, start a receiver as follows:

set env
set CLASSPATH=%CLASSPATHY .
java Hel | oRecei ver

Now from another dos box in the same directory, start a sender as follows

set env
set CLASSPATH=%CLASSPATHY .
j ava Hel | oSender

At this point the receiver dos window should display the message "Received the message: Hello
World." If you try starting up a second receiver, while another receiver is waiting for a message,
you will see the following error message:

j avax. j nms. JMSException: javax.jns. JMSException: Unable to create
receiver for queue as it is already in use. Please close this object
and try again. at

nmodul us. i agent. j ms. | AQueueSessi on. cr eat eRecei ver (1 AQueueSession.ja
va: 101) at Hel | oRecei ver. mai n(Hel | oRecei ver. java: 30)

This is because JMS does not allow multiple receivers in the point—to—point messaging style.

4.5 Running the Publisher and Subscriber
From a dos box in the same directory as the class files, start a subscriber as follows:

set env
set CLASSPATH=%CLASSPATHY .
java Hel | oSubscri ber

Now from another dos box in the same directory, start a publisher as follows

set env
set CLASSPATH=%CLASSPATHY .
j ava Hel | oPubl i sher

At this point the subscriber dos window should display the message "Received the message: Hello
World." Try starting up multiple subscribers and then run a publisher. Not only do the multiple
subscribers run without a problem, but all the subscribers will receive the "Hello World" message
from the publisher. This is because the publish—and-subscribe model is a many-to—many model
that can have multiple subscribers and publishers.

5. Summary

The simple "Hello World" examples in this chapter serve to illustrate an important point, which is
regardless of the messaging style being used the client always follows the same sequence of
steps. This sequence is summarized below:

1. Get a JMS provider specific connection factory.

2. Use the connection factory to get a connection to the JMS provider.

3. Use the connection to create a new session. Remember, the type of session created
depends on the messaging style.

4. Use the session to get a destination for the messages. A session that was created for the
point—to—point messaging style can only be used to get a queue . Similarly a session that
was created for the publish—and-subscribe messaging style can only be used to get a
topic.

5. Use the session to create a sender that can be used to send messages to the destination
created in step 4. The session is also used to create receivers that are used to receive
messages from the destination.

In this chapter, | purposefully refrained from getting into the architectural details of JIMS while at
the same time trying to give you an idea of what a typical JMS client looks like. If it seems fairly
simple to you, then that's great — we have an excellent foundation for moving forward. Keep in
mind, however, that we have glossed over many complex topics, such as security, message-
reliability, message—delivery, transactions and thread—safety. All of these topics are explained in
detail in the remaineder of this book. In the next chapter, | will start delving into the details of JMS.

Chapter 3

The Basics of IMS

In chapter 2, | gave you your first taste of JIMS, but in doing so | glanced over many of the details
of IMS. To use JMS more effectively and efficiently it is important to have a good grasp of these
details, which is the goal of this chapter.

The Concept of Administrable Objects

In chapter 2, we saw two integral concepts of JMS - the destination and the connection factory —
that are not standardized by JMS. | will now tell you why this is so. As | discussed in chapter 1,
JMS selectively specifies only the most critical pieces required for interoperability between
messaging products. As a result, each JMS provider has their own procedures of installing and
administering their product and its unique characteristics. However, since the central idea behind
JMS is client portability, the JMS specification must somehow isolate these unique characteristics
of the individual messaging product from client software. For this purpose, JMS has defined the
concept of Administrable Objects. These are standard objects that are created and customized by
the JMS provider and used by client software to gain access to the messaging product. Both the
destination and connection factory are examples of administrable objects. JMS only defines the
interfaces for these objects that allow clients to use these objects. These interfaces provide the
contract between the client and the JMS provider. As long as this contract is not violated JMS will
guarantee client portability and interoperability. Clients should use these objects only through JMS
specified interfaces to guarantee portability across all JIMS compliant providers. Once again
remember, it is up to the JMS provider to actually provide the objects that implement these
interfaces.

Gaining Access to JMS Administrable Objects

JMS does not specify the method in which clients are to gain access to these administered
objects. That then once again becomes a vendor’s personal preference, and hence a point at
which portability is at stake. For example, in all the examples in chapter 2, | used Sun’s proprietary
method of accessing the connection factories. This would not work with another vendor such as
Progress Software’s JMS provider. To help alleviate such problems, JMS does make the following
recommendations to JMS providers with respect to administrable objects:

1. JMS providers should make these administered objects available in a INDI namespace.
Refer to Appendix C for a very brief introduction to JNDI and a list of references for more
information about this useful API.

2. JMS providers should provide the tools an administrator needs to create and configure
administered objects in a INDI namespace.

3. Implementations of administered objects by JMS providers should be both
javax.jndi . Referenceabl e andj ava. i 0. Seri al i zabl e so that they can be
stored in all INDI naming contexts. In addition, it is recommended that these
implementations follow the JavaBeans design patterns.

4. An administered object should not hold on to any remote resources. Its lookup should not
use remote resources other than those used by JNDI itself. This allows clients to think of
such objects as local Java objects without worrying about locking up resources and
jumping through hoops and hurdles to use them.

Unfortunately these are merely [currently not enforced] recommendations and so many
commercial JMS providers currently do not follow all four of these recommendations. In chapter 8,

I will show you a technique that | use to gain access to the administrable objects in a portable way
that can be used regardless of whether or not a JMS provider follows these recommendations.
This is in contrast to the technique used in chapter 2, which was provider (i.e. Sun’s Java
Message Queue) specific.

Now let’s take a more detailed look at the two administrable objects defined by JMS, starting with
the destination object.

Destination

JMS does not define a standard address format/syntax. The reason for this is that there are simply
too many established enterprise messaging products with different enough addressing formats to
make even the attempt to bridge the gap between these a daunting task. JMS does define the
concept of a Dest i nat i on object though, which is meant to encapsulate all of the provider
specific addressing information. Since this is an administrable object, JMS providers will provide
proprietary ways, such as via programmatic interfaces, a GUI, or both, of configuring this
information. To the client, this is an opaque structure, the contents of which are not important. All
the client knows is that it has access to a destination object that implements the Desti nati on
interface. The Dest i nat i on interface is shown below:

public interface Destination {

Basically, it is just a "marker" interface i.e. it is used to identify a valid destination object. In practice
(and as seen in chapter 2), one seldom uses this interface directly. Rather depending on the
messaging style, one uses either the Queue (or Terrpor ar yQueue) or the Topi c (or

Tenpor ar yTopi ¢) interface. These interfaces are derived from the Dest i nat i on interface and
correspond to the queues and topics | introduced in chapter 2. This relation is shown in figure 1. |
will discuss these interfaces in detail in chapter 6.

interface
Desiination
interface interface
Topic Quene
+Hogtring String +loString String
topicHame:String gqueleMame: String
interface interface
Temporaty Topic TemporaryQuene

+igfete volc! +diglate vl

Figurel: The Destination and related interfaces

Now let’s take a look at the other Administrable Object — the connection factory

The Connection Factory

Once again, instead of defining a set of standard connection parameters that all JIMS providers
must use to specify information to connect with that provider, JMS defines the connection factory
administrable object that encapsulates all the provider specific connection information. This object
implements the Connect i onFact or y interface, which is shown below:

Fubl ic interface ConnectionFactory {

Itis also just a "marker" interface. In practice (and as seen in chapter 2), one seldom uses this
interface directly. Rather depending on the messaging model, one uses either the
QueueConnect i onFact ory or the Topi cConnect i onFact ory interface, which are derived
from this interface. | will discuss these interfaces in chapter 6. This relation is shown in figure 2

interface
ConmnectionfFactory

interface interface
QueneConnectionFactory TopicConnectionFactory

+ereatelileleConnaction QueleConnaction +oregteTopicConnection TopicConnection
+ereafelueleConnaction QueleConnaction +oreate T opicConnection TopicConnection

Figure2: The ConnectionFactory and related interfaces

Connecting to the JMS Provider

As we saw in chapter 2, once a client has access to a connection factory i.e. an object that
implements a Connect i onFact or y interface, it can get an actual connection to the JMS
provider, in the form of a connection object. The JMS specification states the following about a
connection object:

» It encapsulates an open connection with a JMS provider. This may involve the use of
resources outside the local Java virtual machine.

e It can specify a unique client identifier. | will touch on this again later.

» If client authentication needs to be done, it should be done during connection setup. This
being said, JMS does not define what this authentication means or how it's done, so it is
provider specific. It may be as simple as the user specifying a hame and password or
using the user—login information from the underlying operating system. In any case, the
authentication process may be fairly involved and hence the connection should be viewed
as an expensive/heavyweight object.

* No messages are delivered by a connection until it has been started. JMS Providers must
insure that this is the case because clients that cannot handle asynchronous message

delivery depend upon this. | will cover asynchronous message delivery in detail in chapter
4.

A connection object implements the Connect i on interface, which is shown below:

public interface Connection {
String getCientlD() throws JMSException;
void setClientID(String clientlD) throws JMSException;
Connecti onMet aDat a get Met aData() throws JMSExcepti on;
Excepti onLi st ener get Excepti onLi stener ()
t hrows JMSExcepti on;
voi d set Excepti onLi stener (Excepti onLi stener |istener)
t hrows JMSExcepti on;
void start() throws JVMSExcepti on;
void stop() throws JMSException;

void close() throws JVMSExcepti on;
}

In practice (and as seen in chapter 2), one seldom uses this interface directly. Rather depending
on the messaging model, one uses either the QueueConnect i on orthe Topi cConnecti on
interface, which are derived from this interface. | will discuss these interfaces in chapter 6. This
relation is shown in figure 3

I:':I interface
Connection
+atartvoict
+stop ol
+elose ol

clientlD:String
metaData:ConnectionMetaData
exceptionlistenerExceptionListener

interface interface
QueneConnection TopicConneclion
+oreatetiueneSession QueleSession +ereateToplcSession TopicSession
+oreatetonnecionConsumer ConnectionConsumer | | *oreateConnectionConsumen.ConnectionTonsumer
+otagteDurableConnectionConsumear.ConnectionConsumeay

Figure 3: The Connection and related interfaces

The Client Identifier

As mentioned above, each connection object may have a client identifier associated with it. The
JMS specification states the preferred way in which this client identifier gets set is "transparently"
by the connection factory before the connection object is even returned to the client. However,
some JMS providers may hold the client responsible for setting the client identifier. If this is the
case, the client should use the set C i ent | D method on the Connect i on interface. If the
identifier has already been set then it cannot be set again and attempting to do so will raise an
I'll egal St at eExcepti on. If the client identifier must be set by the client, it must be the first
thing done on the connection object. If any other action has already been performed on the

connection object, an | | | egal St at eExcept i on will be thrown. The purpose of client identifier is
to associate a connection and its objects with a state maintained on behalf of the client by a
provider. The JMS specification mandates that client state identified by a client identifier can only
be 'in use’ by one client at a time i.e. A JMS provider must prevent concurrently executing clients
from using the client state at the same time. JMS does not specify what action the JMS provider
must take if concurrently executing clients attempt to access the client state simultaneously.
Therefore, the action taken will be provider specific. For example, one provider may throw a
JMBExcept i on®; another may simply block each client to wait for its turn.

Connection? Tell me about any errors!
The Connect i on interface has a pair of methods that deal with an entity called the "Exception
Listener", which is an object that implements the Except i onLi st ener interface shown below:

public interface ExceptionListener {
voi d onExcepti on(JVMBExcepti on exception);
}

By calling the set Except i onLi st ener method on the connection object and passing it an
object that implements the Except i onLi st ener interface, we allow the connection to
asynchronously notify us of any problems it encounters. It does this by calling the onExcepti on
method of the registered Except i onLi st ener object. IMS specifies that the exceptions
delivered to Except i onLi st ener are those which don’t have any other place to be reported. For
example, if an exception is thrown on a JMS call, it must not be delivered to an

Excepti onLi st ener. Such an exception must be received by the calling thread itself.

Connection Metadata

The connection object provides access to a connection metadata object via the get Met aDat a
method on the Connect i on interface. The connection metadata object implements the
Connect i onMet aDat a interface shown below:

public interface Connecti onMetaData {
String getJMsVersion() throws JMSExcepti on;
i nt get JMSMaj or Versi on() throws JMSExcepti on;
i nt get JMSM nor Version() throws JMSExcepti on;
String get JMSProvi der Name() throws JMSExcepti on;
String getProviderVersion() throws JMSExcepti on;
i nt get Provi der Maj or Ver si ongg t hrows JMSExcepti on;
i nt getProviderM nor Version t hrows JMSExcepti on;
Enuner ati on get JMSXPropertyNanmes() throws JMSException;

}

This object provides the following data:
* The latest version (major and minor) of JMS supported by the provider
» The provider's product name and version (major and minor).
» Alist of the JMS defined property names supported by the connection. | will discuss JMS
properties in detail in chapter 5.

"Starting" the Connection

When a connection object is initially created, it is in "stopped" mode. This means that no
messages are being delivered to/from it. It is typical to leave the connection object in stopped
mode until setup is complete. At that point the connection’s st art method [on the Connect i on
interface] is called and messages begin arriving at the connection’s consumers. This setup
convention minimizes any client confusion that may result from asynchronous message delivery
while the client is still in the process of setting itself up. A connection can immediately be started
and the setup can be done afterwards. However, clients that do so must be prepared to handle

® For details of the IMS exception family refer to Appendix A.

asynchronous message delivery while they are still in the process of setting up. As mentioned
before, | will discuss asynchronous message delivery in detail in the next chapter.

As we saw in chapter 2, in order to actually anything useful with the JMS provider, a client must
use the connection to create a new session, which is the focus of the next section.

The Session Object

As | showed in chapter 2, the connection to a JMS provider acts as a factory of an object known
as the session object. This session object implements the Sessi on interface shown below:

public interface Session extends Runnabl e {
static final int AUTO ACKNOALEDGE = 1;
static final int CLIENT_ACKNOALEDGE = 2;
static final int DUPS OK ACKNOALEDGE = 3;

Byt esMessage creat eByt esMessage() throws JMSExcepti on;
MapMessage creat eMapMessage() throws JMSException;
Message createMessage() throws JMSException;
Ohj ect Message creat eCb] ect Message() throws JMSExcepti on;
nj ect Message creat eObj ect Message(Seri al i zabl e obj ect)

t hrows JMSExcepti on;
St reanmMessage createStreanMvessage() throws JMSExcepti on;
Text Message creat eText I\/bssageg) t hrows JMSExcepti on;
Text Message createText Message(String text) throws JMSExcepti on;
bool ean get Transacted() throws JMSExcepti on;
void commt() throws JMSExcepti on;
void roll back() throws JVMSExcepti on;
void close() throws JVMSExcepti on;
void recover() throws JMSException;
Messageli st ener get MessagelLi stener() throws JMSExcepti on;
voi d set Messageli st ener (MessagelLi stener |istener)

t hrows JMSExcepti on;

public void run();

}

That's a big interface. Let's look at the details. The first three static integers —
AUTO_ACKNOWLEDGE, CLI ENT_ACKNOW.EDGE, and DUPS_OK_ACKNOW.EDGE - in the interface
define the various acknowledgement modes. Each message that a JMS provider delivers to a
consumer must be acknowledged. If a message is not acknowledged it may be redelivered to the
consumer by the JMS provider. The session can be configured to automatically acknowledge each
message as it is received/processed. For example, consider the following code fragment:

QueueConnection connection = // Get the conection?
QueueSessi on session = null;
sessi on = connecti on. creat eQueueSessi on(fal se,

Sessi on. AUTO_ACKNOWLEDGE) ;

Here, | create a new session object with the automatic acknowledgement mode by passing in
Sessi on. AUTO_ACKNOW_EDGE as the second parameter, which means that the session will
automatically acknowledge the receipt of each message to JMS. This is what | did in all the
examples in chapter 2.

Alternatively, a session can be configured not to acknowledge any messages and leave it up to the
client consuming the messages to acknowledge them by passing in Sessi on

. CLI ENT_ACKNOW.EDCE as the second parameter above. The client acknowledges a message
by calling the acknowl edge method on it. | will discuss JMS messages in detail in chapter 5. Note
that as defined by the JMS specification, acknowledging one message actually acknowledges all
messages that the session has consumed. Clients may individually acknowledge messages or
they may choose to acknowledge messages in application—defined groups (which is done by

acknowledging the last received message in the group). Remember that if a message is not
acknowledged, the JMS provider may redeliver it to the consumer.

The third acknowledgement mode, Sessi on. DUPS_OK_ ACKNOW_EDGE, instructs the session
object to lazily acknowledge messages. So, it is possible that the JMS provider may redeliver a
previously received message, and as indicated by the name of the constant (DUPS_COK
ACKNOW.EDGE) , such duplicates are OK. That means message consumers are coded to deal
with such duplicates. The advantage of this mode is that the session has much less overhead
associated with preventing duplicates.

The interface contains several methods to create different types of messages. | will discuss each
of these different types of messages in detail in chapter 5. For now, you'll recognize the

cr eat eText Message, which is the method | used in chapter 2 to create the messages in the
sender and publisher programs.

Sessions can be of two kinds: transacted and non-transacted. In a non-transacted session,
messages are sent/published and received/consumed one at a time, while transacted sessions
allow grouping of messages in bunches before sending or receiving them. The get Tr ansact ed
method returns a boolean to indicate if the session is transacted. For example, consider the
following code fragment:

QueueConnection connection = // Get the conection?
QueueSessi on session = null;
sessi on = connecti on. creat eQueueSessi on(fal se,
Sessi on. AUTO_ACKNOWLEDGE) ;
i f(session. get Transacted())
I Systemout.println("Session is Transacted.");
el se
Systemout.println("Session is not Transacted.");

This session is not transacted as indicated by the first parameter [f al se] to the
cr eat eQueueSessi on method call. So, the get Tr ansact ed method will return f al se, which
means that the message "Session is not Transacted." will be sent to standard output.

The commi t and r ol | back methods are used to commit and rollback the session transaction, if
the session is transacted. If these methods are called on a session that is not transacted then an
1l egal St ateExcepti on will be thrown. In addition if the comm t method is called on a
transacted session and the transaction actually gets "rolled back", a

Transacti onRol | edBackExcept i on is thrown. | will discuss more about transactions in the
next chapter.

There are a pair of methods, set MessagelLi st ener and get Messageli st ener, that deal with
message listeners. A message listener is an object that implements the Messagel.i st ener
interface shown below:

public interface Messageli stener {
voi d onMessage(Message nessage);

A message listener is used to asynchronously receive delivered messages. | will cover
asynchronous message delivery in detail in the next chapter as well.

The r ecover method is used to stop a session and restart it with its first unacknowledged
message. In effect, the session’s series of delivered messages is reset to the point after its last
acknowledged message. The messages [and their order] that the session now delivers to the
consumer may be different from those which were originally delivered due to reasons such as
message expiration and the arrival of higher priority messages. A session must set the redelivered

property of each message it redelivers due to a recovery. | will discuss the redelivered property in
chapter 5.

The r un method is a method derived from the Runnabl e interface and is intended for use by
Application Servers. It is an optional method, which means that a JMS provider may decide not to
implement it.

As we already know, a session cannot send or receive messages either. Instead it is a factory for
creating message senders and receivers, which are called message producers and message
consumers respectively. | will discuss both of these in much more detail in the next sections. Also,
in practice, one seldom uses the Sessi on interface directly. Rather depending on the messaging
model, one uses either the QueueSessi on or the Topi cSessi on interface, which are derived
from this interface. | will discuss these interfaces in chapter 6. This relation is shown in figure 4.

Message Consumers

As discussed above (and as seen in chapter 2), the session serves as a factory of message
consumers. A message consumer is an object that implements the MessageConsuner interface
shown below:

public interface MessageConsumer {
String get MessageSel ector() throws JMSExcepti on;
Messageli st ener get MessagelLi stener() throws JMSExcepti on;
voi d set Messageli st ener (MessagelLi stener |istener)
t hrows JMSExcepti on;
Message receive() throws JVMSException;
Message receive(long tineout) throws JMSException;
Message recei veNoWai t () throws JMSExcepti on;
void close() throws JMSExcepti on;

}

A client uses a message consumer to receive messages from a destination object. Examples of
message consumers are the queue receiver and topic subscriber objects that we used in chapter
2. A message consumer can be created with or without a message selector. Specifying a
message selector allows the client to restrict the messages delivered to the message consumer to
those that match the selector. | will discuss the message selector syntax in detail in chapter 5.

There are two ways a client can receive messages from a message consumer:

1. A client can request the next message from a message consumer using one of its

r ecei ve methods. There are several variations of r ecei ve that allow a client to poll or

wait for the next message. A client can choose to call the blocking r ecei ve method with

no parameters (used in chapter 2), or poll the consumer by calling either the r ecei ve

method with a time out or the r ecei veNoWai t method that does not wait at all.
Alternatively, a client may register a message listener object with a message consumer by calling
the set Messageli st ener method and passing in the message listener as a parameter.
Remember, a message listener is an object that implements the MessageLi st ener interface. As
messages arrive at the message consumer, the message consumer delivers them by calling the
message listener's onMessage method. Registering a message listener allows clients to
asynchronously receive messages without having to block/poll the message consumer.

I:':I interface

Session

FAUTO ACENOWLEDGE:int

FCLIENT ACEMNOWLEDGE:int

+DUPS Qb ACKMOWIL EDGE: Nt

+rormitvoic
+ralifack o
+olose ol
+recovervoid
+hnovoid

+ereateBytesMassane Biitesifessage
+oreatelMapMessage Mapliessage
+oreateMessageMessage
+oregteCbfecifessage Onfectfessage
+ereaielbieciWessage Qbfeciassane
+eregleSheamMessage. Stregmifessage
+ereateTexilessage Textlessage
+ereateTexilassage Texilessage

transacted:boolean

messagelistenermessanelistener

interface
TopicSession

interface
QueneaSession

+oreateTopic Topic

+rregfeSubscibet ToplcSUbacHbar
+rregfesubscibet ToplcSUbacHbar
+rreglelurabiesubscribear TopicSWhscrber
+rregtelurabiesubscribar TopicSWhscrber
+oreatePublsher TaopicPubiisher
+oreateTemparan/opic. TemporanTopic
+unsbacribe wvoid

+oregleueye Qusye

+oregteRecaiver QualaRacalver
+oregteRecaier QualeRacalver
+CregtaSendarGleleSendear
+CragtaBrowsar QUaLaBrOwWsaY
+CregteBrowsor QUalaBFOWSaY
+oreatelamporanLuele TemporanRuele

Figure 4: The Session and its related interfaces

Since a provider may allocate some resources on behalf of a message consumer, perhaps even
outside the local Java VM. As a result, clients should call the cl ose method on the message
consumer when it is not needed anymore. Relying on garbage collection to eventually reclaim the
resources may not be timely enough. The cl ose method call blocks until any r ecei ve method
call or message listener call in progress has completed. A blocked message consumer r ecei ve
call returns nul I when the message consumer is closed, so clients must be prepared to deal with

this situation.

For example, if thread 1 in a client is blocked as follows:

Message m = consuner.receive();
And thread 2 in the same client calls the cl ose method on consuner as follows:
consurner. cl ose();

then assuming no messages were available at the time cl ose was called, mwill be equal to null.
Thread 1 must detect this and take the appropriate action.

In practice, one seldom uses the MessageConsuner interface directly. Rather, one uses either
the QueueRecei ver orthe Topi cSubscri ber interface depending on the messaging style
being used. Both QueueRecei ver and Topi cSubscri ber are derived from the
MessageConsuner interface as shown in figure 5. | will discuss both of these interfaces in detalil
in chapter 6.

I:':I interface

essagelonsimer

+receleMfessage

+recele Message
+receheoWatMessage
+losgvold

messagesSelector String
messagelistenermMessanelistener

interface interface
TopicSubscriber QuenaRecaiver
topic:Topic guele: Queue
noLocalboolean

Figure 5: The MessageConsumer and related interfaces

Message Producers

A session also serves as a factory of message producers, which are used to send messages. A
message producer is an object that implements the MessagePr oducer interface shown below:

public interface MessageProducer {
voi d set Di sabl eMessagel D(bool ean val ue) throws JMSExcepti on;
bool ean get Di sabl eMessagel () throws JMSExcepti on;
voi d set Di sabl eMessageTi nest anp(bool ean val ue)

t hrows JMSExcepti on;
bool ean get Di sabl eMessageTi nestanp() throws JMSExcepti on;
voi d setDeliveryMdde(int deliveryMde) throws JMSExcepti on;
int getDeliveryMdde() throws JMSException;
| ong get Ti neToLi ve() throws JMSExcepti on;
voi d setTi meToLi ve(l ong timeTolLive) throws JMSException;
void setPriority(int defaultPriority) throws JMSException;
int getPriori t%() t hrows JMSExcepti on;
void close() throws JMSException;

As mentioned above, a client uses a message producer to send messages to a destination.
Examples of message producers are the queue sender and topic publisher objects that we used in
chapter 2. A client has the option of creating a message producer without supplying a destination.
If no destination is specified, a destination must be input on every send operation. This is very
similar to how UDP (Uniform Datagram Protocol) operates. A typical use for this style of message
producer is to send replies to requests using the request message’s JMSRepl yTo property. This
is known as "Request/Reply" mode of operation. | will discuss two examples of this in chapter 6.

Each message can be associated with a unique identifier. This is known as the message ID. Since
message ID’s take some effort to create and increase a message’s size, some JMS providers may
be able to optimize message overhead if they are given a hint that a client does not use the
message ID. JMS message producers can give this hint if a client calls the

set Di sabl eMessagel D method on the producer with a t r ue parameter. These messages must
either have message ID set to nul | or, if the hint is ignored, the message ID must be set to its
normal unique value.

Similarly each message can be marked with a timestamp. Since timestamps take some effort to
create and increase a message’s size, some JMS providers may be able to optimize message
overhead if they are given a hint that a client does not use the timestamp. JMS message
producers can give this hint if a client calls the set Di sabl eMessageTi nmest anp method on the
producer with a t r ue parameter. These messages must either have timestamp set to nul | or, if
the hint is ignored, the timestamp must be set to its normal value.

Message producers allow clients the option of specifying a default delivery mode, priority and
time—to-live for all messages sent. Individual messages can override these defaults. | will discuss
this in chapter 5.

The MessagePr oducer interface provides a pair of methods, set Del i ver yMode and
get Del i ver yMode, to set and get the default message delivery mode.

JMS supports two modes of message delivery: persistent and non—persistent. Of these two
modes, the non—persistent mode is the lower overhead delivery mode because it does not require
that the message be logged to stable storage. In case of a JMS provider failure [or even without
one] a non—persistent message may be lost. In fact, a provider that discards every non—persistent
message would still be IMS compliant, although not very competitive in the market *. The non-
persistent mode implies "best effort" semantics, which is open to interpretation by each JMS
provider. However, the JMS specification mandates that a provider must deliver a non—persistent
message at—-most-once. This means it may lose the message but must not deliver it more than
once.

On the other hand, the persistent mode forces the JMS compliant provider to take extra care to
insure the message is not lost in transit due to a JMS provider failure. The JMS specification
mandates that a provider must deliver a persistent message once—and-only—once. This means
that the provider must not allow the message to be lost and it must not deliver it more than once.

Important Sidebar: Persistence != Reliability

Delivery mode only covers the transport of the message to its destination. Retention of a
message at the destination until its receipt is acknowledged is not guaranteed by a persistent
delivery mode. Clients should assume that message retention policies are set
administratively. Message retention policy governs the reliability of message delivery from
destination to message consumer. For example, if a client’'s message storage space is
exhausted, some messages as defined by a site-specific message retention policy may be
dropped.

By providing two mechanisms for message delivery, JMS allows clients to make tradeoffs between
performance and reliability. The non—persistent mode has a performance advantage over the
persistent mode, but is at a disadvantage from a reliability standpoint; the persistent delivery mode
is more reliable (not 100% though. See sidebar). When a client selects the non- persistent
delivery mode it is indicating that it values performance over reliability and that an occasional lost
message is tolerable. On the other hand, a client marks a message as persistent if it feels that the
application will have problems if the message is lost in transit. Clients use delivery mode to tell a
JMS provider how to balance message transport reliability/throughput.

JMS provides a Del i ver Mode interface with two constants corresponding to the two delivery
modes. This interface is shown below:

public interface DeliveryhMde {
static final int NON PERSI STENT = 1,
static final int PERSI STENT = 2;

Delivery mode is set to persistent by default. To set the default delivery mode to non—persistent
delivery, a client would do something like:

producer. set Del i ver yMode(Del i ver yMode. NON_PERSI STENT) ;

A client can also specify a default time—to-live value in milliseconds using the set Ti neToLi ve
method on the MessagePr oducer interface. To calculate the message’s actual expiration time
this value is added to the time (GMT) the message is actually sent. Even for transacted sends, this
is the time the message is sent and not the time at which the transaction is committed. The JMS
specification states that a JMS provider should do its best to accurately expire messages, but
does not define the accuracy required. At the same time, the specification makes it clear that it is
not acceptable for a JMS provider to simply ignore time-to-live. The default time-to-live is set to
zero, which is a special value indicating no expiration or unlimited life. To set the time—to-live to 10
seconds, a client would something like:

producer. set Ti meToLi ve(10*1000) ;

The MessagePr oducer interface also allows the client to specify the default priority of sent
messages via set Pri ori t y the method. JMS defines a ten level priority value with 0 as the
lowest priority and 9 as the highest. Clients should consider priorities 0—-4 as gradations of normal
priority and priorities 5-9 as gradations of expedited priority. JIMS does not require that a provider
strictly implement priority ordering of messages; however, it should do its best to deliver expedited
messages ahead of normal messages. So once again, a provider that simply ignored priorities
would be considered JMS compliant but not very competitive. Priority is set to 4, by default. To set
this to another value, a client would do something like:

producer.setPriority(9);

Since a provider may allocate some resources on behalf of a message producer, perhaps even
outside the local Java VM, clients should call the cl ose method on the message consumer when
it is not needed anymore. Relying on garbage collection to eventually reclaim the resources may
not be timely enough.

In practice, one seldom uses the MessagePr oducer interface directly. Rather, one uses either
the QueueSender or the Topi cPubl i sher interface depending on the messaging style. Both
these interfaces are derived from the MessagePr oducer interface as shown in figure 6. | will
discuss both of these interfaces in detail in chapter 6.

I:':I interface

MeaessageProducer

+losevoid
disablemMessagelD:hoolean
disablemMessageTimestamp:hoolean
deliveryMode:int

timeToLive:long

priorityint

I:':I interface I:':I interface
TopicPublisher QueneSender
+pubiahvalc +aahci ol
+pubiiahvalc +sahcivoicd
+pubiishalc +gsahefvioicd
+publishvalc +sahelviolcd
topic:Topic queueClueue

Figure 6: The MessageProducer and its related interfaces

Shutting down Cleanly

All IMS clients must always shutdown cleanly to ensure that all resources used by the JIMS
runtime, both client and server-side, are released properly and as soon as possible. For example,
the sample programs in chapter 2 closed the session and connection before shutting down. Let's
look at both of these actions and their implications in detail now.

Closing a Session

Let's focus on the cl ose method on the Sessi on interface. Since a provider may allocate some
resources on behalf of a session outside the local Java VM, clients should close them when they
are not needed. Relying on garbage collection to eventually reclaim these resources may not be
timely enough. Following are points to remember with regards to the cl ose method on a session:

* The cl ose method on a session will not return until its message processing has been
orderly shut down. This means that this method will wait until:
0 None of its message listeners are running and,
O If there are any pending receive (i.e. a blocked call to one of the r ecei ve
methods) all of them return with either a nul | or a message.
» When a session is closed there is no need to close its constituent message producers and
consumers. The session close is sufficient to signal the JMS provider that all resources for
the session should be released.

* The JMS specification mandates that closing a transacted session must rollback its
transaction in progress.

* The JMS specification mandates that once a session has been closed an attempt to use it
or its message consumers and producers must throw an | | | egal St at eExcepti on,
with the exception of calls to the cl ose method, which are ignored. It is valid to continue
to use message objects created or received via the session with the exception of a
received message’s acknowl edge method.

Closing the Connection to the JMS Provider

To temporarily stop the connection’s delivery of incoming messages a client may call the st op [on
the Connect i on interface] method on the connection object. The message delivery can be
resumed later by invoking the st art method. Clients sending messages to a stopped connection
are not affected in any way. JMS specifies that the st op method call on the connection object
must not return until delivery of messages has paused. This means that the client thread calling
the st op method may block for some time.

As discussed earlier, a connection object is an expensive object that most likely uses resources
outside of the local Java virtual machine. Therefore, when a connection should be closed as soon
as it is not needed anymore. This is done by calling the cl ose method [on the Connecti on
interface] on the connection object. A call to the cl ose method terminates all pending message
receives (i.e. blocking r ecei ve method calls) on all consumers for that connection. The r ecei ve
calls may return with a message or nul I depending on whether there was a message or not
available at the time of the close. If a message is returned, the client cannot call the

acknow edge method on the message.

Summary

In this chapter, | introduced you to the basic concepts of IMS and showed you how they fit
together. These basic concepts allow clients to create and build IMS—based applications that are
simple, yet very powerful, scalable, and support reliable distribution across machines and
platforms. Most clients will spend a lot of their time interacting directly or indirectly with a session
since it has so many responsibilities. To provide a point of reference, I'll summarize the main
features of the session object below.

» The session object acts a factory for creating message producers and message
consumers.

* The session object also acts as a factory for creating messages.

» The session object defines a serial order for the messages it consumes and produces.

» The session object retains messages it consumes until they have been acknowledged.

» The session object serializes execution of message listeners registered with it.

» The session object supports a single series of transactions that combine work spanning
that session’s producers and consumers into atomic units that can either be committed or
rolled back.

In the next chapter, | will take you beyond the basics and discuss some of the more involved
aspects of JMS such as multithreading, transactions, asynchronous message delivery, and more.

Chapter 4

Beyond the Basics

In the previous chapter, | discussed the basic concepts in JIMS. In this chapter, | will discuss some
of the more involved topics related with these concepts. The topics discussed in this chapter cover
a variety of different aspects of JMS.

JMS Transaction Support

JMS transactions adhere to a set of properties known as the ACID properties. The word ACID is
an acronym that stands for atomicity, consistency, isolation, and durability. Atomicity means that
either all of the messages within a transaction are sent/received or none of them are. Consistency
means that all messages sent/received within a transaction are in a consistent state. Isolation
means that although many transactions may be going on concurrently within the system, it
appears to each individual transaction that all other transactions either complete before it or after
it. In essence, this property implies that two transactions should not affect each other. Durability
means that when a transaction commits, all changes made by it will survive system failures.

Assume that you go to an online bookseller to buy a book. After entering your credit card number,
you hit submit. After doing some initial processing such as initial verification of your credit card
number, the server sends off two messages; one to the credit card issuer and the other to their
warehouse to ship the book. These two messages need to be part of a transaction. Either both of
them get sent or neither does. For example, if the first message gets sent and the second on does
not, your credit card will be billed, but you will not receive the book. On the other hand if the first
message did not get sent, but the second one does, you will essentially get the book for free; a
situation that would upset the bookseller.

JMS’s support for transactions is built into the session object, which may be optionally specified as
transacted, such as shown below:

QueueConnection connection = // Get the conection?
QueueSessi on session = null;
sessi on = connecti on. creat eQueueSessi on(true,

Sessi on. AUTO_ACKNOWLEDGE) ;

In this case, the first parameter passed in to the cr eat eQueueSessi on method is t r ue, which
indicates a transacted session is required.

A transacted session groups a set of produced messages and a set of consumed messages into
an atomic unit of work. When a transaction is committed by a call to the conmi t method on the
session, the consumed messages are acknowledged as an atomic unit and the produced
messages are sent. If on the other hand, the transaction is rolled back by calling the r ol | back
method on the session, its produced messages are destroyed (i.e. never sent) and its consumed
messages are automatically recovered. | discussed the recovery process in the previous chapter.
To recap, the recovery process resets the session to the point after its last acknowledged
message. When this happens the session redelivers the messages that are still applicable.
However, the messages it now delivers may be different from that which were originally delivered
due to message expiration, the arrival of higher priority messages, and of course the transaction
rollback.

Note that there are no explicit methods to begin a transaction. Instead, the completion of a
session’s current transaction, indicated by a call to either the conmi t orr ol | back method,
automatically begins the next transaction.

As an example, consider the following code fragment:

/] assume ts is a transacted session

Topi cPubl i sher tp = ts.createPublisher(topic);
tp. publish(nsgl);

tp.publishEntZg;

tp. publi sh(nsg3

In the above code, the messages nsgl, nsg2, and nsg3 are not sent immediately. Instead, they
are stored by the session until a comi t or r ol | back method on the session is executed. When

the transaction is committed, t s. commi t () , the three messages are sent as a single packaged
unit. On the other hand, if a rollback is performed, t s. r ol | back(), then all three messages are
discarded. Also, as motioned above a comi t or ar ol | back method call signifies the end of the
current transaction; all subsequent operations in the session automatically become part of the next
transaction. Thus, a transacted session always has a current transaction within which its work is
done.

XA Compliance

JMS does not require that a compliant provider implement transactions to be XA compliant. XA
compliant transactions follow the two—phase commit protocol. As an example, transactions in
FioranoMQ 3.0, which is a compliant JMS provider, are not XA compliant.

Distributed Transactions

JMS does not require that a provider support distributed transactions. However, if a provider does
support such transactions, it should do so via the JTA XAResource API. A JMS provider may also
be a distributed transaction monitor. If it is, it should provide control of the transaction via the JTA
API. Most of the commercial JIMS providers do not support distributed transactions and so | will not
discuss this topic further.

Message Acknowledgement Revisited

In the previous chapter, | discussed how the session handles message acknowledgement and the
three different acknowledgement modes that it supports. It is important to remember that if a
session is transacted, message acknowledgment is always handled automatically by commit and
recovery is always handled automatically by rollback. Therefore the only legal acknowledgement
mode for a transacted session is Sessi on. AUTO ACKNOW.EDCE.

JMS Message Delivery Styles

JMS supports synchronous, asynchronous, and concurrent delivery of messages. Let’s look at
each one next.

Synchronous Delivery

A client can request the next message from a message consumer using one of its

r ecei ve methods. As discussed in chapter 3, there are several variations of r ecei ve that allow
a client to poll or wait for the next message. For example,

/1 assume that session is a QueueSession and queue is a Queue.
QueueRecei ver receiver = null;

recei ver = session. createRecei ver(queue);

St reamMessage st ockMessage;

st ockMessage = (Streamvessage)receiver.receive();

In the above code fragment, the r ecei ver will wait indefinitely for a message. Alternatively, |
could have specified a timeout in milliseconds, such as:

/1 wait for 10 seconds only.
st ockMessage = (Streamvessage)receiver.receive(10*1000);

Or, no wait at all:
/1 Don’t wait?

st ockMessage = (Streamvessage)recei ver.recei veNoWait();

Asynchronous Delivery
Instead of waiting/polling the message consumer for messages, a client can register a message
listener with a message consumer. A message listener is an object that implements the

Messageli st ener interface. | listed the MessagelLi st ener interface in chapter 3, which is
shown again for reference:

public interface Messageli stener {

voi d onMessage(Message nessage);

A message listener can be installed on a session or on a message consumer by calling the
set Messageli st ener method and passing in an object that implements the
Messageli st ener interface, such as:

/1 Assume that tc is Topi cConnection?

/1 Use tc to create a transacted topic session
Topi cSession ts = tc.createTopi cSessi on(true,
Sessi on. AUTO_ACKNOWLEDCGE) ;

/1

Install nessage |istener on the Topi cSession

ts. set Messageli stener (new MyMessageHandl er());

/! create a Topi cSubscriber for the topic testTopic
Topi cSubscri ber tsub = ts.createSubscriber(testTopic);

/1

Install nessage |istener on the Topi cSubscri ber

t sub. set MessagelLi stener (new MyMessageHandl er());

In the above code fragment, MyMessageHand!| er implements the Messageli st ener interface
as shown below:

cl ass MyMessageHandl er i npl enents javax.jns. MessageHandl er {

}

public void onMessage(javax.j nms. Message mnsQ)

/1 c?tch al | exceptions
try
/1 Do sonething with the nessage

}
}cat ch(j ava. |l ang. Exception e) {

As messages arrive for the consumer, the provider delivers them by calling the listener’'s
onMessage method. Note that the onMessage method is declared as not throwing any
exceptions i.e. it does not have a t hr ows clause. It is still possible for a listener to throw a
Runt i meExcept i on; however, this is considered a client programming error i.e. bad practice.
Well-behaved listeners should catch all runtime exceptions and attempt to divert messages
causing them to some form of application—specific 'unprocessable message’ destination. The
result of a listener throwing a Runt i meExcept i on depends on the session’s acknowledgment
mode and is described below:

If the session’s acknowledgement mode is AUTO_ACKNOWLEDGE then the message
will be immediately redelivered. The number of times a JMS provider will redeliver the
same message before giving up is provider dependent.

If the session’s acknowledgement mode is CLIENT_ACKNOWLEDGE then the next
message for the listener is delivered. If a client wishes to have the previous
unacknowledged message redelivered it must manually recover the session i.e. call the
recover method on the session.

If the session is transacted then the next message for the listener is delivered. The client
can either commit or rollback the session by calling the appropriate method on the
session. Note that throwing a Runt i neExcept i on does not automatically rollback the
session.

The JMS specification suggests that a JMS provider should flag a client with a message listener
that throws a Runt i meExcept i on as possibly malfunctioning.

Concurrent Delivery

Clients that desire concurrent delivery can use multiple sessions. As I'll discuss in the section
"JMS and Multi-threading" later in this chapter, a single session cannot support concurrent
delivery. However, a connection can have multiple sessions and each individual session’s listener
thread will run concurrently. This means that while a listener on one session is executing, a
listener on another session may also be executing. This allows a client to handle concurrent
message delivery if it so desires.

For example, consider the following code fragment:

/1 Assume that tc is TopicConnection?
/1 Use tc to create a transacted topic session
Topi cSession tsl = tc.createTopi cSession(true,
Sessi on. AUTO_ACKNOWLEDGE) ;
Topi cSession ts2 = tc.createTopi cSession(true,
Sessi on. AUTO_ACKNOWLEDGE) ;

/1 create two Topi cSubscribers for the topic testTopic
Topi cSubscri ber tsubl = tsl.createSubscriber(testTopic);
Topi cSubscri ber tsub2 ts2. createSubscri ber(testTopic);

/1 Install nessage |isteners (callbacks) on each
/1 Topi cSubscri ber

tsubl. set MessagelLi st ener (new MyMessageHandl er1());
t sub2. set Messageli st ener (new MyMessageHandl er2());

Given this code fragment, the listener on both sessions, ts1 and ts2, could be processing
messages concurrently. However, each message is processed in its own transaction and
independent of each other. Depending on the situation, this may or may not be the desired
behavior. As mentioned earlier, IMS does not standardize distributed transactions, so clients
would have to do their own coding to make these separate transactions cooperate.

JMS Message Delivery Order

JMS clients need to understand when they can depend on message order and when they cannot.
Although clients loosely view the messages they produce within a session as forming a serial
stream of "sent messages", the total ordering of this stream cannot be controlled by the client and
hence must not critical to the operation of the client system. If order is critical to the client, then the
client can always put some extra information into the message to recreate the order at the other
end.

Several things can affect the order of messages delivered to the end consumer:
* Messages of higher priority may jump ahead of prior, lower priority messages.
» There is also the possibility that a client may not receive a hon—persistent message, most
likely due to a JMS provider failure.

* The JMS specification only guarantees delivery order within delivery mode. That is, if both
persistent and non—persistent messages are sent to a destination, the order of the
messages is only guaranteed within delivery mode. This means that a later non-
persistent message may arrive ahead of an earlier persistent message; however, it must
never arrive ahead of an earlier non—persistent message with the same priority, unless of
course the former non—persistent message never arrives i.e. was lost.

« Aclient may use a transacted session to group its sent messages into atomic units. A
transaction’s order of messages to a particular destination will be maintained. The order of

these messages sent across destinations is not guaranteed. Remember, JMS does not
explicitly support distributed transactions.

As a result of the above—mentioned factors, the message delivery order for the same set of
messages even with identical delivery modes and priorities can be provider dependent.

JMS Message Duplication

The JMS specification mandates that a JMS provider must never deliver a second copy of an
acknowledged message. When a client uses a session with the AUTO_ACKNOWLEDGE mode it
is not in direct control of message acknowledgment. Since such clients cannot know for certain if a
particular message has been acknowledged, they must be prepared for re—delivery of the last
consumed message. For example, this can occur if the client completed its work just prior to a
failure that prevents the session from acknowledging the message. Only a session’s last
consumed message is subject to this ambiguity.

The JMS specification also mandates that providers must never produce duplicate messages. This
means that a client that produces a message can rely on its JMS provider to insure the consumers
of the message will only receive it once. No client error can cause a provider to duplicate a
message. For example, consider the case when a failure occurs between the time a client commits
its work on a session and the commit method returns. The client cannot determine if the
transaction was committed or rolled back. In such cases where ambiguity may exist, it is up to the
client to deal with this ambiguity, such as by resending the message(s). Note that these are not
considered duplicate messages even though they may be functionally the same. Also, a message
that is redelivered due to session recovery is not considered a duplicate message.

JMS Multi-Threading

Multi-threading is deeply embedded within the Java platform. Java provides a simple, elegant, and
extremely powerful model for creating multi-threaded programs. As with any other powerful
feature, multi-threading must be used with care. JMS could have required that all its objects
support concurrent use. Designing an object to support concurrent use adds complexity to the
design and overhead during runtime. This in itself is not bad, but not all objects are supposed to be
used by multiple threads and in those cases this complexity and overhead are an unnecessary
burden.

JMS has classified objects into two categories: those that would naturally be shared by a multi-
threaded client and those that are to be accessed by one logical thread of control at a time. Table
1 summarizes the categories and the JMS objects belonging to these categories:

JMS objects that support concurrent use do not need any more discussion. Basically, a client can
use them from any thread without the need for any synchronization.

JMS Objects that support Destination, ConnectionFactory, Connection
concurrent use

JMS Objects that do NOT support | Session, MessageProducer, MessageConsumer

concurrent use

Table 1: IMS Objects and their Concurrency support
So, having said that, let’s take a detailed look at the objects that do not support concurrent use.
In the previous chapter, | discussed the session object at length. One detail that | glossed over is

that it is a single threaded context for producing and consuming messages. This means that
sessions are designed for serial use by one thread at a time. The only exception to this occurs

during the orderly shutdown of the session or its connection. The cl ose method on a session can
be legally called by another thread than the thread that owns the session.

Why does the JMS enforce this?
There are two reasons for restricting concurrent access to sessions:

1. Transaction Support.
As discussed previously, sessions are the JMS entity that supports transactions. As a general
rule, it is very difficult to implement transactions that are multi-threaded.

2. The 80/20 rule.

As discussed previously, sessions support asynchronous message consumption. If the
session object supported concurrent access, clients would have to code their asynchronous
message handlers to be capable of handling multiple concurrent messages. In addition, if the
session had been set up with multiple asynchronous consumers, the client would have to
explicitly code to handle the situation where these separate consumers are executing
concurrently. Thus had the session been designed to allow multi-threaded access, clients
using asynchronous delivery would have had to explicitly deal with three major situations:

a. A single message listener is processing multiple messages at the same time.
b. Multiple message listeners are processing the same message at the same time.
c. Multiple message listeners are processing different messages at the same time.

This would be detrimental in at least two ways:
a. Itwould place a burden on most clients who do not have the need for concurrency
b. It would raise the level of development experience required for the creator of a
JMS client significantly, because dealing with bugs introduced by ill-designed
multi-threaded programs is not for the "faint of the heart".

For these reasons, a session serializes all asynchronous delivery of messages. In effect, a
session uses a single thread to run all its message listeners. While the thread is busy executing
one listener, all other messages to be asynchronously delivered to the session must wait. As
discussed earlier in this chapter, more sophisticated clients can get the concurrency they desire by
using multiple sessions.

The Rules for Using Sessions, Message Consumers, and Message Producers

Here are some rules to remember when using sessions. Note that not all JMS providers enforce all
the threading constraints suggested by the JMS specification. However, for maximum portability, |
recommend that you follow these rules whole—heartedly.

1. Only one thread may call the r ecei ve method at a time in the same session. The JMS
specification states that it is erroneous for a client to use a thread of control to attempt to
synchronously receive a message if there is already another client thread of control
waiting to receive a message in the same session. This is true even for two threads of the
same client.

Consider the following code fragment:

/1 assume that session is a Topi cSession
/1 and topic is a Topic.
MyThread t1 = new M/Threadgsessi on, topi cg.startgg;
MyThread t2 = new MyThread(session, topic).start();
cl ass MyThread extends Thread {

public MyThread(?) {

/1 save parans to nenber variabl es?

public void run()
Topi cSubscri ber subscriber = null;
subscri ber = session. createSubscriber(topic);
Message nmsg = subscriber.receive();

}

In the above code fragment, if both threads t1 and t2 execute the r ecei ve method
concurrently (which most likely will happen), it would be a violation of the IMS
specification. The correct way to do this would be to have two separate sessions such as:

/1 assume that sessionl and session2 are Topi cSessi ons
/1 and topic is a Topic.

MyThread t1 = new MyThread(sessionl, topic).start();
MyThread t2 = new MyThread(session2, topic).start();

cl ass Thread extends Thread {
public MyThread(?) {
/1 save paranms to nenber variabl es?
}

public void run(L {
Topi cSubscri ber subscriber = null
subscri ber = session. createSubscriber(topic);
Message nsg = subscriber.receive();

}

Once a connection has been started, all its sessions with a registered message listener
are dedicated to the thread of control that delivers messages to them. The JMS
specification states that it is erroneous for client code to use such a session from another
thread of control. The only exception to this rule is that the cl ose method of the session
or connection may be called concurrently from another thread.

Since a session with a registered message listener is dedicated to the thread of control
that delivers messages to it, a session with message listeners cannot also be used to
synchronously receive messages. That is, either the session is dedicated to the thread of
control used for delivery to message listeners or it is dedicated to a thread of control
initiated by client code. The JMS specification states that it is erroneous to attempt to
combine both in the same session. So, the following is not allowed by JMS:

/1 assune that session is a QueueSession
/1 and queue is a Queue.

QueueRecei ver receiver = null;

recei ver = session. createReceiver(queue);

recei ver. set Messageli st ener (new MyMessageHandl er());

/1 This is not allowed since we already installed
[l a message |istener? .
Message nsg = receiver.receive();

If a client desires to have one thread producing messages while another thread
asynchronously consumes messages at the same time, the client should use a separate
session for its producing thread. This is especially important with transacted sessions.

Remember, whenever a session contains one or more asynchronous message listeners,
the JMS provider implementation automatically creates a single thread that is used to
deliver all messages to ALL message listeners. In this case, the client should avoid

creating producer objects within that session. So now we have one thread that's executing
the message listeners and another thread i.e. the client thread, that's sending/publishing
messages. This may result in two threads operating on the same session at the same
time, even though the session is not thread-safe.

Consider the following code fragment:

/1 Assume that tc is Topi cConnection?
/]l Use tc to create a transacted topic session
Topi cSession ts = tc.createTopi cSession(true,
Sessi on. AUTO_ACKNOWL.EDGE) ;

/1l create two TopicSubscribers for the topic testTopic
Topi cSubscri ber tsubl = ts.createSubscriber(testTopic);
Topi cSubscri ber tsub2 = ts.createSubscriber(testTopic);

/1 Install nessage |isteners on each Topi cSubscri ber

/1 The JMS provider will execute all these listeners on the //
same, special thread. One such thread per session.
tsubl. set Messageli st ener gnew MyMessageHandl| er 183 ;
t sub2. set Messageli st ener (new MyMessageHandl er 2

/1 create a TopicPublisher for the topic testTopic
Topi cPubl i sher tp = ts.createPublisher(topic);

/'l bad! This is executed on the client thread.
tp. publish(?);

Now consider the following scenario:

The client thread is publishing a message at the same time that one of the message
listeners has just finished executing a conmi t on the session. At this point all the
messages published by t p are also automatically committed (i.e. all messages produced
by all publishers will be sent to the JMS Server, regardless of whether the application—
code executes a commit operation or not). Thus, operations performed by the message
listener threads can affect the operations in the client thread and vice-versa. For this
reason, it is strongly recommended that clients use separate sessions to send and receive
messages, if the message receipt is done asynchronously.

However, the following is legal:

/1 Assune that tc is Topi cConnection?

/]l Use tc to create a transacted topic session
Topi cSession ts = tc.createTopi cSession(true,
Sessi on. AUTO_ACKNOWL.EDGE) ;

/'l create two Topi cSubscribers for the topic testTopic
Topi cSubscri ber tsubl = ts.createSubscri bergt est Topl cg;
Topi cSubscri ber tsub2 = ts.createSubscriber(testTopic);
/] create a TopicPublisher for the topic testTopic

Topi cPubl i sher tp = ts.createPublisher(topic);

/1 Install nessage |isteners on each Topi cSubscri ber

tsubl. set Messageli st ener gnew MyMessageHandl| er 1Et));
t sub2. set Messageli st ener (new MyMessageHandl er 2)53;

cl ass MyMessageHandl erl1 inpl ements javax.jnms. MessageHandl er {

public MyMessageHandl er 1() {
) /] save tp to a nenber variable.

public void onMessage(javax.jnms. Message nsg) {

/1 catch all exceptions

try {
/1 Do sonething with the nmessage

tp. publish(?);

cat ch(j ava. |l ang. Exception e) {

}

So, why is this legal? | just said that you should create separate sessions for
sending/publishing and asynchronous receiving. Now I'm giving an example that doesn’t
require this. No, I'm not nuts. In this example, the publisher tp is used in the same thread
that is invoking the message listeners, so we are NOT violating the single thread access
requirement for using sessions.

4. To setup a session with more than one message listener, the connection that the session
belongs to must be in the stopped mode. This is because if the connection is not in the
stopped mode, it may deliver a message to the listener registered with the listener. At this
point the session is controlled by the thread that delivered the message to it and hence
cannot be configured by the client thread anymore. In general, as discussed in chapter 3,
it is always good coding practice to finish all setup before starting the connection.

JMS and Security

With the advent of distributed computing, security has become an even more important topic of
discussion. A good security policy should allow the setting up of at least the following (let’s call
these requirements):

1. Authentication Policies
Identifies each user of the JMS provider.

2. Authorization Policies
Identifies every operation that a user can/cannot perform on the JMS provider. For example, a
user "Mallory" may not be allowed to send messages over the queue called "Executive".

3. Message Integrity
Allows setting up policies that can be used to detect whether a message has been altered
during transit.

4. Message Privacy

Allows setting up privacy levels that determine how the message travels from the source to the
destination i.e. is the message sent as plaintext or it is encrypted? If it is encrypted, how
strong is the encryption, etc?

In addition, any security policy enforcement should be separable from the actual business code
that a developer must write. That is, setting up security should be a separate task from actually
creating the business application (unless of course your business is security *). This allows the
business/domain expert to create the application, allowing the system administrator/deployment
expert to concentrate on setting up the security policies. Although not related to the above four
requirements, | would add this as requirement #5. This is a feature found in all successful
application servers today.

As | mentioned in chapter 1, JMS does not define a security model for secured messages. Instead
it is upto each individual JMS provider to implement their own security features. This means that a
JMS provider may not provide any security features at all and still be IMS compliant. It also means
that most commercial (and open source) implementations will provide at least some security
features as a point of competitive differentiation.

JMS does provide the hooks for implementing a simple username and password based securtiy
model as seen in the QueueConnect i onFact ory and Topi cConnect i onFact ory interfaces
below:

public interface QueueConnecti onFactory extends ConnectionFactory {
QueueConnecti on creat eQueueConnecti on()
t hrows JMBExcepti on;
QueueConnecti on creat eQueueConnection(String user Nane,
String password) throws JMSException;

}
and,

public interface Topi cConnecti onFactory extends ConnectionFactory {
Topi cConnecti on creat eTopi cConnecti on()
t hrows JMSExcepti on;
Topi cConnecti on creat eTopi cConnection(String user Nane,
String password) throws JVMSExcepti on;

Both these intefaces derive from the generic Connect i onFact or y interface that | discussed in
chapter 3. As its name implies, the QueueConnecti onFact ory is used for creating queue
connections. The cr eat eQueueConnect i on mentod instructs the JMS provider to create a
queue connection with default user identity. The exact meaning of the default user identity is
provider specific. The other version of the cr eat eQueueConnect i on method takes a username
and password and instructs the JMS provider to create a queue connection with these user
credentials. Similarly, the Topi cConnect i onFact ory is used to create topic connections. The
two versions of cr eat eTopi cConnect i on are very similar to the two versions of

cr eat eQueueConnect i on, except that the former pair returns a topic connection instead of a
gqueue connection. These methods may throw a JMSSecur i t yExcepti on if client
authentication fails due to a invalid username or password. How authenticity is determined is
provider specific.

Thus JMS provides the facilities to satisfy requirements #1 (directly) and #2 (indirectly) above.
Requirements #3 and #4 are still entirely provider specific.

Let's take a step—by-step look at how a typical [hypothetical] JMS provider could enforce security
policies setup by an administrator.

1. Let's assume user "Alice" wants to send a message to user "Bob" via the queue called
"privateQ". The administrator has setup Alice and Bob as users and a queue called
"privateQ" using the administration features of our hypothetical JMS provider.

2. Anne opens a new connection to the JMS provider as follows.

QueueConnection connection =
gcf.createQueueConnection("Anne","Anne’s Password");

Here qcf is a queue connection factory (don't worry how we got it for now), "Anne" is the
username and "Anne’s Password" is her password. In our hypothetical JMS provider, the
client side JMS runtime sends the username and a one—way hash (using the MD5

algorithm, for example) to the JMS server along with the connection request. The JMS
server maintains a [secure] database of usernames and the hashed passwords, which it
uses to verify Anne’s identity. This is known as "Authentication.” Since Anne is a "valid"
user, she gets to establish the queue connection.

Now Anne wants to send a message over the queue called "privateQ," which she does as
follows:

QueueSessi on session = connection. creat eQueueSessi on(fal se,
_ Sessi on. AUTO_ACKNOWLEDGE) ;
Queue queue = session. createQueue("privateQ');

In our hypothetical IMS provider, a session object inherits the security credentials of its
creator ("Anne") from the connection. So when Anne tries to create the queue "privateQ",
the JMS runtime sends the username, the password hash and the request to create the
gueue. Let’'s assume that Anne has been granted the permission to create the queue and
so this attempt succeeds. This is known as "Authorization".

Now Alice attempts to send a message to Bob via the queue as follows.

QueueSender sender = session. creat eSender (queue);
Sender . send(nessage) ;

Two checks are performed at this stage. The first check occurs when Alice attempts to
create the queue sender and the second check occurs when Alice uses this sender to
actually send a message. Either one of these could fail. For example, Alice might have
been granted permission to create a sender for the queue "privateQ" but not to send
messages Vvia the queue (not very logical, but possible).

The message may travel long distances before actually reaching Bob. During this time a
user "Eve" may read the message. This is where privacy comes into play. During the
creation of a session, the JMS client runtime and the JMS server may agree upon a
session key. Every message sent from this client to the JMS server will be encrypted
using this session key using an algorithm such as DES. This makes Eve do a lot more
work if she wants to read our messages. While Eve simply wanted to read the message
contents, a more malicious user "Mallory" may actually corrupt the message. If the
message is not confidential and we simply want to detect Mallory’s actions the JMS client
runtime can append the message with an encrypted one-way hash of the message (i.e.
digital signature). The JMS server would then also calculate the hash of the message and
compare it to the decrypted hash in the message to verify the message integrity.

On the other side Bob goes through the same steps as Alice, except that in step 4, Bob
creates a queue receiver and calls receive on it. In this case, our hypothetical IMS
provider verifies that Bob is authorized to create a queue receiver for the queue "privateQ"
and receive messages on it.

In the above example, our hypothetical JMS provider has built its entire security model on top of
JMS’s simple security support. Plus, the JMS developer does not have to do any more work to
enable security. This model is only an example and | can think of many improvements. For
example, using digital certificates and a scheme similar to SSL not only can the JMS server
authenticate the client, but the client can authenticate the server as well. This is known as "mutual
authentication." Most Commercial JMS providers do provide a much more robust security model
and many more security features. The main point to remember is that IMS does not define how a
JMS provider provides security or even if any security is provided at all. However, enterprise
applications require security and so the security support provided by any JMS provider must be
considered while selecting a provider. Hopefully, the discussion in this section should provide a
good start for any such evaluation.

Summary

In this chapter, | discussed some of the more involved issues surrounding the basic concepts of
JMS. | started off with a discussion about how JMS supports transactions. We then looked at the
various message delivery styles and the order in which IMS messages are delivered. Finally, |
discussed in detail the considerations for using JMS in a multi-threaded environment. In the next
chapter, | will discuss the lifeblood of any messaging system — messages.

Chapter 5

The JMS Message Model

Introducing the JMS Messages

At the heart of any message oriented middleware (MOM) system lies, you guessed it, messages.
In other words, messages are the lifeblood of such systems, for without these messages such
systems would not be able to accomplish much. As with every other aspect of available enterprise
level messaging products, there exists as many message formats as there exist products. JMS
attempts to standardize the message model. The JMS messaging model is simple, elegant, and
provides the flexibility to send any type of data across the enterprise.

As shown in figure 1, IMS defines five different types of messages that can be published by an
application, all of which derive from a common base, Message.

l:'] interface

Message

JSMessagelD:String
JuETimestamplong
JMECarrelation|D:String
JuSRephTo:Destination
JSDestination:Destination
JMSDeliveryModeint
JMERedelivered:boalean
JMEType String
JMEBExpiration:long
JuSPriarityint
properyhNames: Enumeration

I\

interface interface interface intetface interface
Mapllessage Bytesifessage Streamifessage

TextMessage| | _ ObjectMessage |

mapMames:Enumeration ohject:Serializable

tent:String

Figure 1: The JMS Message Model

As with every other aspect of IMS, JMS only provides a set of message interfaces that define the
JMS message model. Each JMS provider provides the implementation of these interfaces. This
allows a provider to use message implementations that are tailored to its needs. A provider must
be prepared to accept, from a client, a message whose implementation is not one of its own. A

message with a 'foreign’ implementation may not be handled as efficiently as a provider's own
implementation; however, it must be handled.

I mentioned in chapter 3 that the session object acts as a factory for creating messages. The
relevant portion of the Sessi on interface is shown below:

public interface Session extends Runnabl e {
H Only Message Creation nethods shown
r

for clarity

Message createMessage() throws JMSExcepti on;
Byt esMessage creat eByt esMessage() throws JMSExcepti on;
MapMessage creat eMapMessage() throws JMSException;
hj ect Message creat eChj ect Message() throws JMSExcepti on;
nj ect Message creat eObj ect Message(Seri al i zabl e obj ect)
t hrows JMSExcepti on;
St reamMessage createStreanvessage() throws JMSExcepti on;
Text Message creat eText Message() throws JMSExcepti on;
Text Message createText Message(String text) throws JMSExcepti on;

}

Most JMS providers will make the constructor of each of its message implementations private or at

least package protected, so that clients cannot create messages by calling new on the class. A
valid message should be creatable only by using the appropriate factory method on the session
object.

All IMS messages are composed of the following three parts:

1. The Message Header

All messages support the same set of header fields. Header fields contain values used by both

clients and providers to identify and route messages.

2. The Message Properties

In addition to the standard header fields, messages provide a built-in facility for adding
optional header fields to a message. These properties may also be used by message
consumers for filtering out messages that they are not interested in, or rather specifying
exactly which messages they are interested in. This is known as "Message Selection” in IMS
parlance and will be covered in detail later in this chapter. There are three types of supported
properties:

a. Application—specific properties

This provides a mechanism for adding application specific header fields to a message.

Applications can define their own properties unique to their domain.

b. Standard properties
JMS defines some standard properties that are, in effect, optional header fields. IMS
defines a naming convention for such properties.

c. Provider-specific properties
Integrating a JMS client with a JMS provider native client may require the use of
provider—specific properties. JMS defines a haming convention for such properties.

3. The Message Body

JMS defines several types of message body which cover the majority of messaging styles
currently in use. The message body contains the actual data that is to be transmitted via the
message. Think of the message body as the actual contents of an envelope. The header and
properties are analogous to the "to" and "from" addresses and any other information required
to get the envelope to its destination. The JMS provider is analogous to the postal service.

The JMS message interfaces provide write/set methods for setting object values in a message
body and message properties. The JMS specification states that JMS providers must implement
all of these methods so that they copy their input objects into the message [as opposed to keeping
a reference to the actual object itself]. The value of an input object can be nul | and will return

nul I when accessed. The only exception to this is that Byt esMessage does not support the
concept of a nul | stream and attempting to write a nul | into it will throw

j ava. |l ang. Nul | Poi nt er Except i on. The JMS message interfaces also provides read/get
methods for accessing objects in a message body and message properties. Once again, the JMS
specification states that all of these methods must return a copy of the accessed message objects
rather than a reference to the actual message object itself.

When a client receives a message it is in read—only mode. If a client attempts to write to the
message at this point, a MessageNot Wi t eabl eExcept i on is thrown. If cl ear Body is called
on the message, the message can now be both read from and written to. Calling the cl ear Body
method only clears out the message body, not the header and properties.

The Message Interface

As shown in figure 1, all IMS message types are derived from the Message interface, which is
defined as follows:

public interface Message {

static final int DEFAULT DELI VERY MODE = Del i ver yMode. PERSI STENT;

static final int DEFAULT PRIORITY = 4;

static final |ong DEFAULT_TIME_TO LI VE = O;
5H;//
/1 Methods to nani pul ate the Message Header
5H;//

/1 JNMSMessagel D
String get JMsMessagel D() throws JVMSExcepti on;
voi d set JMSMessagel D(String id) throws JVSExcepti on;

/1 JNMSTI mest anp
| ong get IMBTi mestanp() throws JVSExcepti on;
voi d set JMSTi nest anp(l ong ti mestanp) throws JVSExcepti on;

/1 JMBCorrel ati onl D

byte [] getJMsCorrel ationl DAsBytes() throws JMSExcepti on;

voi d set JMSCorrel ati onl DAsByt es(byte[] correlationlD) throws
JVMBSExcepti on;

void setJMSCorrel ationl D(String correl ationlD) throws JMSExcepti on;
String getJMsCorrelationl D) throws JMSExcepti on;

/1 JINMSRepl yTo
Desti nation get JMSRepl yTo() throws JMSExcepti on;
voi d set JIMSRepl yTo(Destination replyTo) throws JVSExcepti on;

/1 JMsDestination
Destination getJMSDestination() throws JMSExcepti on;
voi d set JMSDest i nation(Destination destination) throws JVSExcepti on;

/1 JINMBDel i ver yMode
i nt getJMSDel |1 veryMode() throws JVMSExcepti on;
voi d set IMSDel i veryMode(i nt deliveryhMbde) throws JVSExcepti on;

/1 JNMSRedei | ver ed
bool ean get JMSRedel i vered() throws JNMSExcepti on;
voi d set JMSRedel i ver ed(bool ean redelivered) throws JMSException;

[l JIMSType
String get IMSType() throws JMSException;
voi d set IMSType(String type) throws JVSExcepti on;

/1 JNMSExpiration
| ong get JMSExpiration() throws JMSExcepti on;
vol d set JMSExpi ration(long expiration) throws JMSExcepti on;

[INMSPriority
int getJMSPriority() throws JMSException;
void setJMSPriority(int priority) throws JMSException;

LOPTTIIEE L r b r bbb r bbb
/1 Methods to get/set Message Properties
FELEEEEEEErrrrrr bbb bbb bbb bbb bbb

[/l Get a property

bool ean get Bool eanProperty(String nane) throws JMSException;
byt e get ByteProperty(String nane) throws JMSExcepti on;

short get ShortProperty(String nane) throws JMSExcepti on;

int getlntProperty(String nane) throws JMSException;

| ong get LongProperty(String nane) throws JMSExcepti on;

float getFloatProperty(String nane) throws JMSExcepti on;
doubl e get Doubl eProperty(String nane) throws JVSExcepti on;
String getStringProperty(String nanme) throws JVSExcepti on;
bj ect get hj ect Property(String nane) throws JVSExcepti on;

/1 Set a property
voi d set Bool eanProperty(String nane, bool ean val ue)

t hrows JMSExcepti on;
voi d setByteProperty(String name, byte value) throws JMSException;
voi d set ShortProperty(String nane, short value) throws JVSExcepti on;
void setIntProperty(String nane, int value) throws JMSException;
voi d setLongProperty(String name, |ong value) throws JMSException;
voi d setFl oat Property(String nanme, float value) throws JVSExcepti on;
voi d set Doubl eProperty(String nane, double value) throws JVSExcepti on;
void setStringProperty(String nane, String value) throws JVMSExcepti on;
voi d set Obj ectProperty(String nane, Cbject value) throws JVSExcepti on;

void clearProperties() throws JMSExcepti on;
Enuner ati on get PropertyNanmes() throws JVSExcepti on;
bool ean propertyExists(String nane) throws JVSExcepti on;

11 [T rirrrrri
| | aneous
11 FHHEELErrrirrrnri

<

/1 11
/1 sce
/1 11

voi d acknowl edge() throws JNMSExcepti on;
voi d cl earBody() throws JMSExcepti on;

}

The bulk of the Message interface provides methods to access the message header and
properties.

The Message Header

As mentioned earlier, there is a core set of header fields supported by all messages. Header fields
contain values used by both clients and providers to identify and route messages. Let’s look at
each header field one by one.

JMSMessagelD

The Message interface provides a pair of methods, get IMSMessagel Dand set IMSMessagel D,
to get and set the Message ID in a message respectively. When a message is passed to the
send/ publ i sh method of a message producer, the JMSMessagel D header field in the message
is ignored. When the send/ publ i sh method returns it contains a provider—assigned value, which
the client can get and keep track of. A JMSMessagel Dis a St ri ng value which should function
as a unique key for identifying messages. The exact scope of uniqueness is provider defined. All
JMsSMessagel Dvalues must start with the prefix 'ID:". Uniqueness of message ID values across
different providers is not required.

Since message IDs take some effort (and time) to create and increase a message’s size, JIMS
specifies a way in which clients can provide a "hint" to the JMS provider that it does not use the
message ID. A client gives this hint by calling the set Di sabl eMessagel D method on the
message producer with a t r ue parameter. Note that this is called a "hint", which means that any
specific JIMS implementation is free to make use of the hint or to ignore it. If the hint is set to true,
messages must either be assigned a null message ID or, if the hint is ignored, the message ID
must be set to its normal unique value.

JMSTimestamp

The Message interface provides a pair of methods, get JMSTi nest anp and set JIMSTi nest anp,
to get and set the Message ID in a message. The JMSTi nest anp header field contains the time a
message was handed off to a provider to be sent. It is not the time the message was actually
transmitted because the actual send may occur later due to transactions or other client side
queuing of messages. When a message is passed to the send/ publ i sh method of a message
producer, the JMSTi nmest anp header field in the message is ignored. When the send/ publ i sh
method returns it contains a provider—assigned value, which the client can get and keep track of.

As with message IDs, timestamps take some effort (and time) to create and increase a message’s
size as well. So, JMS specifies a way in which clients can provide a "hint" to the JMS provider that
it does not use the timestamp. A client gives this hint by calling the

set Di sabl eMessageTi nest anp method on the message producer with at r ue parameter.
Note that this is called a "hint", which means that any specific JMS implementation is free to make
use of the hint or to ignore it. If the hint is set to true, messages must either be assigned a null
timestamp or, if the hint is ignored, the timestamp must be set to its normal value.

JMSCorrelationID
A client can use the JMSCor r el at i onl D header field to link one message with another. A
typically use is to link a response message with its request message.

JMSCor r el at i onl Dcan hold one of the following:
» A provider—specific message ID or an application—specific string
The Message interface has a pair of methods set JMSCor r el at i onl Dand
get JMsCor r el at i onl Dto support this. For example:
nsg. set IMSCorr el ati onl D("2000: 07: 20: 10: 56: 02: Met hod1") ;

* A provider—native byte[] value.

The Message interface has a pair of methods set JMSCor r el at i onl DAsByt es and
set JMSCorr el ati onl DAsByt es to support this.

JMSReplyTo

The JMSRepl yTo header field contains a Dest i nat i on supplied by a client when a message is
sent. It is the destination where a reply to the message should be sent. The Message interface
has a pair of methods, get JMSRepl yTo and set JMSRepl yTo, to set and get the JMSRepl yTo
header field. | will discuss an example usage of this property in the next chapter in the section
"Request/Reply Operation".

JMSDestination

The JMSDest i nat i on header field contains the destination to which the message is being sent.
When the message is passed to the send/ publ i sh method on the message producer this value
is ignored. After completion of the send/ publ i sh it will hold the destination object specified by
the sending method. The Message interface has a pair of methods, set JVMSDest i nati on and
get JMSDest i nat i on, to set and get this header field.

JMSDeliveryMode

The JMSDel i ver yMode header field contains the delivery mode to be used to deliver the
message is being sent. When the message is passed to the send/ publ i sh method on the
message producer this value is ignored. After completion of the send/ publ i sh it will hold the
delivery mode object specified by the sending method.

JMS supports two modes of message delivery: persistent and non—persistent. Of these two
modes, the non—-persistent mode is the lower overhead delivery mode because it does not require
that the message be logged to stable storage. In case of a JMS provider failure [or even without
one] a non—persistent message may be lost. In fact, a provider that discards every non—persistent
message would still be IMS compliant, although not very competitive in the market *. The non-
persistent mode implies "best effort" semantics, which is open to interpretation by each JMS
provider. However, the JMS specification mandates that a provider must deliver a non—persistent
message at—-most-once. This means it may lose the message but must not deliver it more than
once.

On the other hand, the persistent mode forces the JMS compliant provider to take extra care to
insure the message is not lost in transit due to a JMS provider failure. The JMS specification
mandates that a provider must deliver a persistent message once—and-only—once. This means
that the provider must not allow the message to be lost and it must not deliver it more than once.

The Message interface has a pair of methods, set JMSDel i ver yMode and
get JMSDel i ver yMbde, to set and get this header field.

JMSRedelivered

If a client receives a message with the JMSRedel i ver ed indicator set, it is likely, but not
guaranteed, that this message was delivered to the client earlier but the client did not acknowledge
its receipt at that time. This header value is set by the JMS Provider. The Message interface has a
pair of methods, set JMSRedel i ver ed and get JMSRedel i ver ed, to set and get the

JMSRedel i ver ed header field.

JMSType

The JMSType header field contains a message type identifier supplied by a client when a
message is sent. Some JMS providers use a message repository that contains the definition of
messages sent by applications. The type header field may reference a message’s definition in the
provider’s repository. JMS does not define a standard message definition repository nor does it
define a haming policy for the definitions it contains. The Message interface has a pair of
methods, set JIMSType and get JIMSType, to set and get the IMSType header field. For example:

nsg. set IMSType(" Account sPayabl e") ;

JMSExpiration

The JMSExpi r at i on header field contains the message’s expected time-to-live. When a
message is passed to the send/ publ i sh method of a message producer, the JMSExpi rati on
header field in the message is ignored. After completion of the send/ publ i sh this field will hold
the value specified by the method sending the message.

To calculate the message’s actual expiration time the value contained in the JMSExpi r at i on
header field is added to the time (GMT) the message is actually sent. Even for transacted sends,
this is the time the message is sent and not the time at which the transaction is committed. The
JMS specification states that a JMS provider should do its best to accurately expire messages, but
does not define the accuracy provided. At the same time, the specification makes it clear that it is
not acceptable for a JMS provider to simply ignore time-to-live.

The Message interface has a pair of methods, set JMSExpi r ati on and get IMSExpi rati on,
to set and get this header field.

JMSPriority

The JMSPri ori ty header field contains the message’s priority. When a message is passed to
the send/ publ i sh method of a message producer, the JMSPri ori t y header field in the
message is ignored. After completion of the send/ publ i sh this field will hold the value specified
by the method sending the message.

JMS defines a ten level priority value with O as the lowest priority and 9 as the highest. Clients
should consider priorities 0—4 as gradations of normal priority and priorities 5-9 as gradations of
expedited priority. JIMS does not require that a provider strictly implement priority ordering of
messages; however, it should do its best to deliver expedited messages ahead of normal
messages. So, a provider that simply ignored priorities would be considered JMS compliant but
not very competitive in the market.

The Message interface has a pair of methods, set JMSExpi r ati on and get JMSExpi rati on, to
set and get this header field.

JMS Note:

JMS permits an administrator to configure JMS to override the client specified values for

JVBDel i ver yMbde, IMSExpi rati on and JMSPri ori ty. If this is done, the header field value
must reflect the administratively specified value instead of the client specified value. JMS does not
define specifically how an administrator overrides these header field values. A JMS provider is not
required to support this administrative option.

Table 1 summarizes the various header properties and who sets them

Header Field Who sets it?

JMSDestination The Send/Publish method
JMSDeliveryMode The Send/Publish method
JMSEXxpiration The Send/Publish method

JMSPriority The Send/Publish method
JMSMessagelD The Send/Publish method
JMSTimestamp The Send/Publish method
JMSCorrelationID The Client

JMSReplyTo The Client

JMSType The Client
JMSRedelivered The JMS Provider

Table1

The Message Properties

In addition to the header fields defined above, JMS messages contain a built-in facility for
supporting property values. In effect, this provides a mechanism for adding optional header fields
to a message. These properties can be used to filter messages. | will discuss this later in the
chapter in the section "Message Selection". Properties are specified as hame/value pairs. The
name of the property is a String with some restrictions, which will be discussed when | discuss
message selection. The value of the property can be a bool ean, byt e, short,int, | ong,

fl oat,doubl e, or Stri ng.

Property values are set prior to sending a message. Remember, when a client receives a
message, its properties are in read—only mode. If a client attempts to set properties at this point, a
MessageNot Wi t eabl eExcepti on is thrown.

JMS Note:

For best performance, JMS recommends that applications should only use message properties
when they need to customize a message’s header. This "customized" header can then be used in
the JMS message selection process. Message selection is covered later in this chapter. The
reason that the specification makes this recommendation is because the engineers felt that most
JMS providers are likely to handle the message body much more efficiently than they handle the
message properties. So per this recommendation, if a piece of data is not going to be used to filter
data using the JMS message selection process then that data is better off being part of the
message body. Note that even though some JMS providers may handle message properties
equally or even more efficiently than they handle the message body, this is still a good
recommendation to follow as it leads to a cleaner message structure by forcing the designer to
think about each piece of data in the message.

Application Specific Properties

This provides a mechanism for adding application specific header fields to a message.
Applications can define their own properties unique to their domain. The names of these properties
must follow a set of rules that are discussed later in this chapter as part of message selection.
Primitive property types can be read or written explicitly using methods for each type. They may
also be read or written generically as objects. For example the following two lines of code are
equally effective in setting an integer property "TrasactionNumber" to the value "6" .

/1 Assuming nsg is a valid "witable" Message
nmsg. set I nt Property("Transacti onNumber", 6);
nsg. set Obj ect Property(" Transacti onNunber", new I nteger(6));

Both forms are provided because the explicit form is convenient for static programming and the
object form is needed when types are not known at compile time. Note that the

get/ set Obj ect Property methods only works for the "objectified" primitive object types

(I nt eger, Doubl e, Long ...), St ri ngs and byte arrays.

Standard Properties

JMS reserves the 'JMSX’ property name prefix for IMS defined properties. The full set of these
properties is provided in table 2 . New JMS defined properties may be added in later versions of
JMS. IMSXG oupl Dand JMBXGr oupSeq are standard properties that clients should use if they
want to group messages. All providers must support them. Support for all other IMSX properties is
optional. The get JMSXPr oper t yNanes method of the Connect i onMet aDat a interface returns
the names of the IMSX properties supported by a connection.

JMSX Property Type Who Sets it? Typical Use

JMSXUserID String Provider on Send/Publish | The identity of the user sending the
Message

JMSXAppID String Provider on Send/Publish | The identity of the application
sending the message

JMSXDeliveryCount int Provider on Receive The number of message delivery
attempts; the first is 1, the second
2,...

JMSXGrouplD String Client The identity of the message group
this message is part of

JMSXGroupSeq int Client The sequence number of this

message within the group; the first
message is 1, the second 2,...

JMSXProducerTXID String Provider on Send/Publish | The transaction identifier of the
transaction within which this
message was produced

JMSXConsumerTXID | String Provider on Receive The transaction identifier of the
transaction within which this
message was consumed

JMSXRcvTimestamp | long Provider on Receive The time JMS delivered the
message to the consumer

JMSXState int Provider Provider specific data for a
message

Table 2: IMS Standard Properties.

JMS Note:
Except the IMSXG oupl D and JMSXG oupSeq properties, the values and semantics of all IMSX
properties are undefined.

Most JMS clients will never need to use the standard properties with the exception of the

JMBXG oupl Dand JMSXGr oupSeq properties. But why use these standard properties for
message grouping when JMS already allows clients to define their own application specific
properties? For example, a company called Online Insight could do message grouping by defining
properties called "OiGroupID" and "OiGroupSeq". One reason to use the standard properties is
that, since these are standard properties, all applications which touch the message can interpret
the meaning of these properties. Therefore, we can add third party applications that know nothing
of the rest of our application, but who listen to a topic and do something useful such as log
messages — and these third party applications will be able to know which messages are grouped
together by reading these standard properties. Likewise, JMS vendors can release administrative
type tools that can make use of the semantics of these standard properties.

Provider Specific Properties

JMS reserves the 'JMS_<vendor_name>’ property name prefix for provider—specific properties.
Each provider defines their own value of <vendor_name>. This is the mechanism a JMS provider
uses to make its special per message services available to a JMS client.

JMS Note:

The purpose of provider—specific properties is to provide special features needed to support IMS
use with provider—native clients. They should not be used for JMS to JMS messaging i.e. clients
should not rely upon these properties at all.

Calling cl ear Properti es on the Message will clear all properties. A client can query the
existence of a particular property by calling the pr oper t yExi st s method on the Message as
follows:

[/l Are we in a customtransaction?
i f(neg. propertyExi sts("Transacti onNunber")) {
/'l Get the transaction nunber and continue?

// Not in a customtransacti on?

/1 No transaction?

The client can also walk through every property, for example:

/1 Wal k through all the properties?
java.util.Enunmeration enum = nsg. getPropertyNanmes();
whi | e(enum hasMor eEl enent s()?

String nanme = enum next El ement () ;
/1l get the property value and do sonet hing useful ?

}

Note that the order of the properties is not defined. This means that the order of property names in
the enumeration returned by the get Pr oper t yNanmes method may not be in any deterministic
order, or even the order in which they were initially set on the message.

Attempting to get a property value for a name which has not been set is handled as if the the
property exists with a nul | value.

JMS-mandated Type Conversions for Properties
Consider the following code fragment:

/1 Assuming nmsg is a valid "witable" Message
nsg. set |l nt Property("Transacti onNunber", 6);
neg. set Obj ect Property("Transacti onNunber", new | nteger(6));

Stri ng txNunber = nsg.get StringProperty("Transacti onNunber");
Systemout. println("Transaction Nunber is " + txNunber);

Even though the "TransactionNumber" property was added as type i nt , this code will work
without a hitch. The i nt will be converted into a type St r i ng by the message implementation.

Table 3 summarizes all the legal conversions which must be supported by all JIMS providers.

boolean = byte short char int long float double | String
boolean X X
byte X X X X X
short X X X X
char X X
int X X X

long X X
float X X X
double X X
String X X X X X X X X

Table 3: Thelega conversions allowed between Message Properties. A value written as the row type can be
read as the column type.

The "X" marked cases must be supported by a JMS provider. The unmarked cases must throw a
MessageFor mat Excepti on. The Stri ng to primitive conversions may throw a runtime
exception if the primitives val ueO () method of the corresonding primitive’s class (such as

I nt eger fori nt) does not accept it as a valid St ri ng representation of the primitive.

The Message Body

So far we've looked at the message header and properties. Now let's take a look at the actual
payload of the message itself — the message body.

As mentioned before, JIMS defines five types of messages. Each of these derives from the
Message interface, so each message type provides the same support for header and property
information. Based on the type of data to be sent in the message, a client can use the type of
message that best suits its needs.

Let's look at each message type.

Text Message
A text message object implements the Text Message interface defined by JMS as follows:

public interface Text Message extends Message ({
void setText (String string) throws JMSException;
String getText() throws JMSException;

}

A Text Message is used to send a message containing a java.lang.String. The primary reason this
message type was included was that the authors of the JMS specification anticipated that XML
would become a popular mechanism for representing content; an anticipation that has come true.

To create a Text Message message object, a client calls one of the two versions of
cr eat eText Message on the session object. For example,

/'l Assume session is a valid Session object.
Text Message txt Msg = sessi on. cr eat eText Message() ;

To set the actual message in the text message object, a client calls the set Text method, such
as:

t xt Msg. set Text ("I am a Text Message!");
Alternatively, these two steps can be combined as:

/'l Assume session is a valid Session object.
Text Message txt Msg = sessi on. creat eText Message(
"I ama Text Message!");

To access the value of the data inside a Text Message, a client calls the get Text method

Object Message

An object message implements the Obj ect Message interface defined by JMS as follows:

public interface Object Message extends Message {
voi d set Obj ect(Serializable object) throws JMSException;
Serializable gethject() throws JVMSException;

}

An Obj ect Message is used to send a message that contains a serializable Java object. To
create a Obj ect Message message object, a client calls one of the two versions of
cr eat e(bj ect Message on the session object. An example is shown below:

class MyQbj ect inplenents java.io.Serializable {
String nane;
public MyQbject(n) {
name = n;

}
public void changeNane(String newNane) {
name = newNane;

/| Assume session is a valid Session obj ect.
bj ect Message obj Message = sessi on. cr eat eObj ect Message() ;
obj Message. set Obj ect (new MyQbj ect (" John"));

/1 O use the overl oaded version of createCbject Message
/1 Obj ect Message obj Message = sessi on. creat eCbj ect Message(
/1 new MyQoj ect ("John"));

Consider the following code fragment:

/1 Assunme session is a valid Session object.

bj ect Message obj Message = sessi on. cr eat eObj ect Message() ;
MyCbj ect obj = new MyQbj ect ("John");

obj Message. set Obj ect (obj) ;

obj . changeName(" Ji ni') ;

What name does the object in the message contain now, "John" or "Jim? The message still has
an object with the name "John" because the ObjectMessage implementation must make a copy of
an object passed to it. Remember, the JMS specification mandates this.

To send a collection of such objects, one of the collection classes provided in JDK 1.2 may be
used. For example:

/] create a list of "MyQbject" objects
java.util.ArrayList list = new java.util.ArrayList();
list.add(new MyQbj ect ("John"));

Iist.addgnew I\/y(])jectg"Bill"gg;

|'ist.add(new MyObj ect ("Phil"
l'ist.add(new MyQbj ect ("Bob"));

/1 Assunme session is a valid Session object.

bj ect Message obj Message = sessi on. cr eat eObj ect Message() ;
/1 Send the list as the nessage payl oad.

obj Message. set Gbj ect (list);

Clients receiving an Qbj ect Message should use the get Obj ect method to access the object
contained in the message. For example:

/'l Assune that receiver is a valid MessageConsuner object
bj ect Message obj Message = ((hj ect Message) recei ver.receive();
Serializable obj = obj Message. get Obj ect();
i f(obj instanceof MyQbject) {
/1 single instance?

el se if(obj instanceof ArraylList) {
) /1 Alist of MWQhjects?

Stream Message
A stream message contains a stream of Java primitive values. A stream message implements the
St r eamvessage interface defined by JMS as follows:

public interface Streamvessage extends Message {

/1 Read nethods

bool ean readBool ean() throws JMSException;
byte readByte() throws JMSExcepti on;

short readShort () throws JMSException;
char readChar () throws JMSException;

int readlint() throws JMSException;

| ong readLong() throws JMSExcepti on;

float readFl oat () throws JMSException;
doubl e readDoubl e() throws JMSExcepti on;
String readString() throws JMSExcepti on;
int readBytes(byte[] value) throws JMSExcepti on;
bj ect readCbj ect() throws JMSExcepti on;

/1 Wite methods

void witeBool ean(bool ean val ue) throws JMSException;

void witeByte(byte value) throws JMSExcepti on;

void witeShort(short value) throws JVMSExcepti on;

void witeChar(char value) throws JMSExcepti on;

void witelnt(int value) throws JMSException;

void witelLong(long value) throws JMSExcepti on;

void witeFloat (float value) throws JVMSExcepti on;

void witeDoubl e(doubl e val ue) throws JMSExcepti on;

void witeString(String value) throws JMSExcepti on;

void witeBytes(byte[] value) throws JMSException;

void witeBytes(byte[] value, int offset, int |ength)
t hrows JMSExcepti on;

void witeCbject(hject value) throws JMSExcepti on;

void reset() throws JMSException;
}

Although bulky, this is an extremely easy interface. The interface can be summarized as

/'l pseudo-code interface
public interface StreamVessage extends Message {

/1l Read data of type "XXX"
XXX readXXX() throws JVMSExcepti on;

/[l Wite data of type "XXX"
void witeXXX(XXX data) throws JVMSExcepti on;

void reset() throws JMBException;

The primitive types can be read or written explicitly using methods for each type. They may also
be read or written generically as objects. For example the following two lines of code are equally
effective in sending the integer value "6" in the message:

/1 Assuming streamvsg is a valid "witable" Stream Message
streamvsg. witelnt(6);
streamvsg. witehject (new I nteger(6));

Both forms are provided because the explicit form is convenient for static programming and the
object form is needed when types are not known at compile time. Note that the

read/ writ eObj ect methods only works for the "objectified" primitive object types (I nt eger,
Doubl e, Long ...), St ri ngs and byte arrays.

To create a St r eanmMessage, a client uses the cr eat eSt r eamVessage method on the session
as follows:

I/ Assume session is a valid Session object.
StreamMessage streamvsg = session. createStreamvessage ();

Using the r eset and cl ear Body methods

When a stream message is first created the body of the message is in write—only mode. After a
call to the r eset method has been made, the message body is in read—only mode. When a client
sends a stream message, the provider calls r eset in order to read it's content, and actually send
the message across. When the stream message is received on the other side, the provider
reconstructs the message and calls r eset on it so that the message body is in read—only mode
for the client. Now if the client calls cl ear Body on this message, the message body is cleared
and the message body is in write—only mode. This is different than the other two messages I've
discussed so far in which calling cl ear Body makes the message both "readable" and "writable".
If a client attempts to read a message in write—only mode, a MessageNot Readabl eExcepti on
is thrown. If a client attempts to write a message in read-only mode, a

MessageNot Wi t eabl eExcepti on is thrown.

Let's go through an example.

cl ass MyRectangl e {
int top;
int bottom
int wdth;
i nt height;

public MyRectangle(int t, int b, int w, int h) {
top =t;

MyRect angl e rectangl e = new MyRect ange(10, 20, 50, 30);

/1 Assume session is a valid Session object.
Streamvessage streamVsg = session. createStreamvessage ();

streanmvsg. witelnt(rectangle.top);
streamvsg. witelnt(rectangle.bottom;
streanmvsg. witelnt(rectangle.width);
streanvsg. witelnt(rectangle. hei ght);

/1 This will throw a MessageNot Readabl eExcepti on
int x = streamvsg.readlnt();

/1 Now it won't?
streamMvsg. reset();
int y = streansg.readlnt();

/1 But nowl can’'t wite anynore?
/1 This will throw a MessageNot Wit eabl eException
streanmvsg. witelnt(y);

Stream messages are filled and read sequentially. This means that if | write a St r i ng followed by
ani nt,then I mustread a St ri ng followed by an i nt in the same sequence. However, the i nt
canbereadoutasanint,al ong, ora String. This conversion is allowed by the

St r eanmVessage implementation. Table 4 summarizes all the legal conversions that all IMS
provider implementations of St r eanmVessage must support.

boolea | byte short | char int long float doubl | String | byte[]
n e

boolea X X

n

byte X X X X X

short X X X X

char X X

int X X X

long X X

float X X X

double X X

String X X X X X X X X

byte[] X

Table 4: The legal conversions. A value written as the row type can be read as the column type.

The "X" marked cases must be supported by a JMS provider. The unmarked cases must throw a
JMSExcepti on. The Stri ng to primitive conversions may throw a runtime exception if the
primitives val ueOf () method of the corresonding primitive’s class (such as | nt eger fori nt)
does not accept it as a valid St r i ng representation of the primitive.

Map Message

A map message is one whose body contains a set of name-value pairs where the names are
Strings and the values are Java primitive types. The map message implements the MapMessage
interface defined by JMS as follows:

public interface MapMessage extends Message {

/1 Get values fromthe map.

bool ean get Bool ean(String nane) throws JMSException;
byte getByte(String name) throws JMSExcepti on;

short getShort(String nanme) throws JNMSException;
char getChar(String name) throws JMSException;

int getInt(String nane) throws JMSExcepti on;

| ong getlLong(String name) throws JNMSException;

float getFloat(String nanme) throws JMSExcepti on;

doubl e get Doubl e(String nanme) throws JMSExcepti on;
String getString(String name) throws JMSExcepti on;
byte[] getBytes(String name) throws JMSExcepti on;
nj ect getject(String nanme) throws JMSExcepti on;

/1 Set values in the nap.
voi d setBool ean(String name, bool ean val ue) throws JMSExcepti on;
void setByte(String nanme, byte value) throws JMSException;
voi d setShort(String name, short value) throws JNMSExcepti on;
void setChar(String name, char value) throws JMSExcepti on;
void setInt(String nane, int value) throws JMSExcepti on;
voi d setlLong(String name, |ong value) throws JMSException;
void setFloat(String name, float value) throws JMSExcepti on;
voi d set Doubl eEStri ng nane, doubl e val ueg t hrows JMSExcepti on;
void setString(String nane, String value) throws JVMSException;
void setBytes(String name, byte[] value) throws JMSException;
void setBytes(String name, byte[] value, int offset,

int length) throws JMSException;
void set Qbject(String nane, Object value) throws JVMSExcepti on;

/1 M scel | aneous.
Enuner ati on get MapNames() throws JVMSExcepti on;
bool ean itenkxi sts(String nane) throws JMSException;

}

This interface is very similar to the St r eamVessage interface and can be summarized as

/'l pseudo-code interface
public interface MapMessage extends Message {

/1 Get value of type "XXX' fromthe map
XXX get XXX(String nanme) throws JMSException;

/1 Set data of type "XXX'" in the map
voi d set XXX(String nane, XXX data) throws JMSExcepti on;

/1 M scel | aneous.
Enuner ati on get MapNames() throws JVMSExcepti on;
bool ean itenkxi sts(String nane) throws JMSException;

}

The primitive types can be get or set explicitly using methods for each type. They may also be
read or written generically as objects. For example the following two lines of code are equally
effective in sending the integer value "6" in the message:

/1 Assuming mapMsg is a valid "witable" Mp Message
mapMsg. set I nt ("anl nt eger", 6);
mapMsg. writeCbj ect ("anl nteger”, new I nteger(6));

Both forms are provided because the explicit form is convenient for static programming and the
object form is needed when types are not known at compile time. Note that the get / set (bj ect
methods only works for the "objectified" primitive object types (I nt eger, Doubl e, Long ...),

St ri ngs and byte arrays.

To create a MapMessage, a client uses the cr eat eMapMessage method on the session as
follows:

/1 Assume session is a valid Session object.
MapMessage mapMsg = sessi on. cr eat eMapMessage() ;

The entries in a map message can be accessed sequentially by enumerator, which is obtained by
calling the get MapNanes method or randomly by name. For example:

// Random access
int x = mapMsg. getlnt("anlnteger");

/1 Wal k through the map?
java.util.Enunerati on enum = mapMsg. get MapNanes() ;
whi | e(enum hasMor eEl enents()) {

String name = enum next El ement () ;

/1 get the value and do sonething useful ?

}

Note that the order of the entries is undefined. So, the order of the keys returned in the
enumeration from the get MapNanes method may not be the same as the order in which the
values were added to the map. The MapMessage also supports the same conversions as
supported by the St r eanMessage, which are tabulated in table 4.

Bytes Message
A bytes message contains a stream of "uninterpreted” bytes. The bytes message implements the
BytesMessage interface defined by JMS as follows:

public interface BytesMessage extends Message {

/1 Read nethods

bool ean readBool ean() throws JMSException;

byte readByte() throws JMSExcepti on;

i nt readUnsi gnedByte() throws JMSExcepti on;
short readShort () throws JMSException;

i nt readUnsi gnedShort() throws JMSExcepti on;
char readChar() throws JMSException;

int readlnt() throws JMSExcepti on;

| ong readLong() throws JMSExcepti on;

float readFl oat () throws JMSException;

doubl e readDoubl e() throws JMSExcepti on;

String readUTF() throws JMSExcepti on;

i nt readByt esEbyteH val ue) throws JI\/SExcepti on;
i nt readBytes(byte val ue, int length) throws JMSExcepti on;

/1 Wite methods

void witeBool ean(bool ean val ue) throws JMSException;
void witeByte(byte value) throws JMSExcepti on;

void witeShort(short value) throws JVMSException;
void witeChar(char value) throws JMSExcepti on,

void witelnt(int value) throws JMSExcepti on;

void witelLong(long value) throws JNMSExcepti on;

void witeFloat(fl oat value) throws JVMSException;
void witeDoubl e(doubl e val ue) throws JMSExcepti on;
void witeUTF(String val ue) throws JMSException;

void witeBytes(byte[] value) throws JMSException;
void witeBytes(byte[] value, int offset, int length) throws
JVBEXxcept i on;

void witeCbject(hject value) throws JMSExcepti on;

void reset() throws JMSException;

This interface is extremely similar to the St r eamMVessage interface | discussed earlier.

Byt esMessages are typically used for literally duplicating the body of one of the other message
types. Typically, applications use one of the four self-describing message types instead of using
Byt esMessages. However, Byt esMessages are useful in situations where one needs to read in
raw data, for example, from a disk file and transfer it "as is" (without any conversion at all, such as
Big Endian/little Endian, etc.) to another machine and/or location.

To create a Byt esMessage, a client uses the cr eat eByt esMessage method on the session as
follows:

/1 Assume session is a valid Session object.
Byt esMessage bytesMsg = session. creat eByt esMessage ();

Using the r eset and cl ear Body methods

When a bytes message is first created the body of the message is in write—only mode. After a call
to the r eset method has been made, the message body is in read—only mode. When a client
sends a bytes message, the provider calls r eset in order to read it's content, and actually send
the message across. When the bytes message is received on the other side, the provider
reconstructs the message and calls r eset on it so that the message body is in read—only mode
for the client. Now if the client calls cl ear Body on this message, the message body is cleared
and the message body is in write—only mode. This is similar to the stream message that we saw
earlier. Also remember, if a client attempts to read a message in write—only mode, a
MessageNot Readabl eExcept i on is thrown. If a client attempts to write a message in read—-only
mode, a MessageNot Wi t eabl eExcept i on is thrown.

JMS Note:
Although the interfaces are very similar, the Byt esMessage does not allow conversion between
types as do the St r eamMVessage and MapMessage.

Message Selection

The number of messages going back and forth in a message based system can be overwhelming,
especially if a client is not interested in all the messages it receives. In the simplest case, the client
can be held responsible for browsing through the message and discarding the ones it is not
interested in. There are several problems with this approach as outlined below:

1. The client has the burden of filtering out all the messages it does not need. This is extra
work for each client in the system.

2. Even though the client is not interested in a message, it is still delivered to it thus wasting
both processing time and network bandwidth.

3. Adirect result of 1 and 2 is reduced scalability and performance.

An alternative approach is to separate the filtering criteria from the actual body of the message.
This allows the provider to handle much of the filtering and routing work that would otherwise need
to be done by the client. IMS provides a facility that allows clients to delegate message selection
to their JMS provider. This simplifies the work of the client and allows JMS providers to eliminate
the time and bandwidth they would otherwise waste sending messages to clients that don’t need
them.

Clients can attach application—specific selection criteria to messages using message properties.
Clients specify message selection criteria using JMS message selector expressions. These
expressions can be based on any of the information available in the header and properties
(application, standard, and provider specific) parts of the message. Only messages whose
headers and properties match the specified selector are delivered to the client. A message
selector matches a message if the selector expression evaluates to t r ue when the message’s
header field and property values are substituted for their corresponding identifiers in the selector.

The Message Selector Syntax
The message selector syntax is a subset of the SQL92 conditional expression syntax. Following
are points to note about this syntax:

1. Predefined selector literals and operator names are case insensitive. So, the operator
"OR" is the same as "or".

2. Rules for Identifiers (These are the rules that must be followed when naming application
specific properties) :

a.

b.

d.

An identifier does not have a limit on the number of character in its name.
An identifier name must begin with the a "start" character, which is any character
for which the Char acter. i sJaval dentifi er Start method returnsat r ue.
A character may start a Java identifier if and only if it is one of the following:

i.aletter

ii.a currency symbol (such as "$")

iii.a connecting punctuation character (such as "_").
All other characters in the identifier following the first must return a t r ue value
when passed to the Char act er. i sJaval denti fi er Part method. A character
may be part of a Java identifier if and only if it is one of the following:

i.aletter

ii.a currency symbol (such as "$")

iii.a connecting punctuation character (such as " ").

iv.a digit

v.a numeric letter (such as a Roman numeral character)

vi.a combining mark

vii.a non-spacing mark

viii.an ignorable control character
Identifiers cannot be the following reserved names: Identifiers cannot be the
names: NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, and IS.
Identifiers must be either header field references or property references.
Identifiers are case sensitive.

Message header field references are restricted to JMSDel i ver yMbde,
JVMSPriority, JVBMessagel D, JMSTi nest anp, JMsCorr el ati onl D, and
JMSType.

Any name beginning with 'JMSX’ is a JMS defined property name.

Any name beginning with 'JMS_’ is a provider—specific property name.

Any name that does not begin with 'JMS’ is an application—specific property
name. If a property is referenced that does not exist in a message its value is
NULL. If it does exist, its value is the corresponding property value.

Rules for literals
a.
b.

A string literal is enclosed in single quotes. For example, 'a string literal’.

An exact numeric literal is a numeric value without a decimal point such as 57,
—-957, +62; numbers in the range of Java long are supported.

An approximate numeric literal is a numeric value in scientific notation such as
7E3, -57.9E2 or a numeric value with a decimal such as 7., —95.7, +6.2; numbers
in the range of Java double are supported.

The boolean literals TRUE and FALSE are supported.

All spaces, horizontal tabs, form feeds and line terminators are considered whitespace

and follow the same rules as in Java.

c.
d.

Expression Evaluation
a.
b.

Standard bracketing () for ordering expression evaluation is supported.
Expressions are evaluated from left to right. Paranthesis can be used to alter the
order. For example, 5 + 4 * 2 evaluates to 18, but 5 + (4 * 2) evaluates to 13.
Logical operators in precedence order: NOT, AND, OR

Comparison operators: =, >, >=, <, <=, <> (not equal)

i.Only like type values can be compared. One exception is that it is valid to
compare exact numeric values and approximate numeric values (the type
conversion required is defined by the rules of Java numeric promotion). If
the comparison of non-like type values is attempted, the selector is
always evaluated to false.
ii.String and Boolean comparison is restricted to = and <>.
e. Precedence of Arithmetic operators is as follows:
i.+,— (unary)
ii.multiplication and division
iii.addition and subtraction

6. Miscellaneous Operators
a. [NOT] BETWEEN
i.age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19
ii.,age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19
b. [NOT]IN
i.Country IN (" UK’, 'US’, "France’) is true for 'UK’ and false for 'Peru’ and is
equivalent to the expression (Country =’ UK’) OR (Country =’ US’) OR
(Country =’ France’).
c. [NOT]LIKE
i.Used for pattern matching. ’_’ stands for any single character, "%’ stands
for any sequence of characters, and all other characters stand for
themselves.
ii.phone LIKE '12%3’ is true for '123' '12993’ and false for '1234’
iii.word LIKE 'l_se’ is true for 'lose’ and false for 'loose’
d. 1S NULL
i.Color IS NULL evaluates to true if the value of Color is NULL or if it's not
present.
e. IS NOT NULL
i.Color IS NOT NULL evaluates to true is the value of Color is not NULL.

To clarify, let's look at the following code fragment:

String sel ector="(JMSType=" Account sPayabl e AND Dol | ar Cr edi t >5000) ";
sel ector = selector + " OR (JMBXUser| D = ' johndoe')";

/1 Assume that session is a valid QueueSession
/1 and queue is a valid Queue.

recei ver = session. createReceiver(queue, sel ector);

As shown above, a selector expression is specified while creating the message consumer and is
passed in as the second parameter. The JMS specification mandates that JMS providers verify
the syntactic correctness of a message selector at the time it is presented. A method providing a
syntactically incorrect selector must result in a | nval i dSel ect or Except i on being thrown. If a
selector is specifiec, a consumer will only receive messages that match the selection criteria.

Let's consider two messages:

The first message has the following relevant header properties:

* JMSType ='AccountsPayable’

» DollarCredit = 2500
This message will not reach the consumer with the above selector since the DollarCredit property
value is not greater than 5000, which makes the first half of the selector evaluate to false and
JMSXUserlID is not present at all, which makes the second half false as well.

The second message has the following relevant header properties:

 JMSType='AccountsPayable’

* DollarCredit = 6000

e JMSXUserlD = johndoe’
This message would be received because the second half of the selector evaluates to true, thus
making the entire selector (in this case) true.

Summary

Messages are the lifeblood of a message based system. Therefore, the importance of having a
firm grasp over the JMS message model cannot be overstated. In this chapter, I've covered this
model in detail. We've discussed the structure of JIMS messages, its components, the different
types of messages, and the message selection syntax. The JMS message model is simple yet
powerful. It provides developers with a unified message API that enables the creation of messages
with any type of data and supports the development of heterogeneous message based
applications that span operating systems, machine architectures, and computer languages.

Chapter 6

The JMS Messaging Styles

In chapter 2, | introduced you to the various messaging styles supported by JMS. To recap, JMS
supports both messaging styles that are most popularly available [and in use] in commercial
enterprise—-level messaging products today. These are point-to—point and publish—and-subscribe.
Since many messaging systems [may] only support one of these styles, JMS provides a separate
domain for each and defines compliance for each domain. This means that messaging products
can be JMS compliant even if they do not support both messaging styles. In addition, JIMS
supports a third [variation] style known as request/reply, which applies to both the point-to—point
and publish—and-subscribe styles.

In this chapter, | will discuss all three of these styles as they relate to JMS in detail alongwith code
examples to clarify. As in chapter 2, the examples in this chapter are based on Sun Microsystem’s
Java Message Queue product and will be dependent on it. In chapter 8, | will show you a
technique | use to get rid of this dependency.

Let's look at the point—-to—point style first.

Point-To—-Point Messaging

Sender #1 Messages

i

Sender #2 Queue Messages) | Receiver

Sender #3 Mezzages

Figure 1: Point-to—point Messaging Style

Following are the basic components/pieces of JMS involved in this style:
e The Destination is known as Queue.
e The ConnectionFactory is known as a QueueConnectionFactory.
e The Connection is known as QueueConnection.
» The Session is known as a QueueSession
» The MessageProducer is known as a QueueSender.

e The MessageConsumer is known as a QueueReceiver.
Note the use of the word Queue in every piece of JMS asscociated with this style.

In this style, a messaging product is used by two applications to communicate with each other,
often as an asynchronous replacement for RPC. As shown in figure 1, multiple senders can send
messages to a single receiver. JMS does not specify the support for multiple receivers. Some JMS
providers may allow multiple receivers for a single queue, but remember, this support will be
vendor specific.

In the following sections I'll discuss each one of the basic pieces involved in the point—-to—point
messaging stlye. These pieces were identified above. Let's start with the
QueueConnecti onFact ory.

QueueConnectionFactory

As shown in figure 2 in chapter 3, the QueueConnect i onFact ory interface is actually derived
from the Connect i onFact ory interface. The QueueConnect i onFact or y interface is shown
below:

public interface QueueConnecti onFactory
ext ends Connecti onFactory {
QueueConnecti on creat eQueueConnecti on()
t hrows JMBExcepti on;
QueueConnecti on creat eQueueConnection(String user Nane,
String password) throws JMSException;

}

As its name implies, the queue connection factory is used for creating queue connections. The

cr eat eQueueConnect i on mentod instructs the JMS provider to create a queue connection with
default user identity. The exact meaning of the default user identity is provider specific. The other
version of the cr eat eQueueConnect i on method takes a username and password and instructs
the JMS provider to create a queue connection with these user credentials. This version of the
method may throw a JMSSecur i t yExcept i on if client authentication fails due to a invalid
username or password. Both methods throw a JMSExcept i on if the queue connection cannot be
created.

Like its parent, the queue connection factory is an administrable object as well. JMS does not
define any facilities for creating, administering, or deleting queue connection factories. These
facilities are provided by the JMS provider and hence are provider specific.

QueueConnection

As discussed above a queue connection is obtained through a queue connection factory. Figure 3
in chapter 3 showed that the QueueConnect i on interface derives from the Connecti on
interface. The QueueConnect i on interface is shown below:

public interface QueueConnecti on extends Connection {
QueueSessi on creat eQueueSessi on(bool ean transact ed,
i nt acknow edgeMbde) throws JMSExcepti on;
Connecti onConsuner creat eConnecti onConsuner (Queue queue,
String nessageSel ector, Server Sessi onPool sessi onPool ,
i nt maxMessages) throws JMSExcepti on;

}

Just as the queue connection factory is a factory for creating queue connections, the queue

connection is a factory for creating queue sessions through the cr eat eQueueSessi on method .
This method takes two parameters; the first parameter indicates whether the session is transacted
and the second parameter specifies the message acknowledgement mode. I've discussed both of

these in detail in chapters 2 and 3. This method will throw a JIMSException if the connection fails to
create a session due to some internal error or a lack of support for specific transaction and/or
acknowledgement mode.

This interface also has an additional method cr eat eConnect i onConsuner . The JMS
specification has flagged this method as an optional method that providers may choose not to
implement and further states that this is an expert facility that is not used by regular clients. Most
providers do not implement this method and so | will not discuss it in this book.

QueueSession
As shown in figure 4 in chapter 3, the QueueSessi on interface is actually derived from the
Sessi on interface. The QueueSessi on interface is shown below:

public interface QueueSession extends Session {
Queue createQueue(String queueNane) throws JMSExcepti on;
QueueRecei ver creat eRecei ver (Queue queue)
t hrows JMSExcepti on;
QueueRecei ver creat eRecei ver (Queue queue,

String nessageSel ector) throws JMSException;
QueueSender creat eSender (Qeue queue) throws JVSExcepti on;
QueueBr owser createBrowser(Queue queue) throws JVSExcepti on;
QueueBrowser createBrowser (Queue queue,

String nessageSel ector) throws JMSExcepti on;

Tenpor aryQueue creat eTenporaryQueue() throws JMSExcepti on;

}

The cr eat eQueue method is somewhat misleading. The JMS specification states that this
method is provided "for the rare cases where clients need to dynamically manipulate queue
identity. This allows the creation of a queue identity with a provider specific name. Clients that
depend on this ability are not portable.”

Note — createQueue caveat

Different providers have slightly different behaviors for this method. For example, Sun’s Java
Message Queue actually allows the creation of the queue (as the name implies). Most IMS
compliant messaging products require the use of their administration facilities to actually create
the queue beforehand. This method in those providers merley lets you get a reference to the
gueue to pass into other methods, such as cr eat eRecei ver and cr eat eSender .

The cr eat eRecei ver method is used to create a queue receiver to receive messages from a
specified queue. I'll discuss both the queue and queue receiver objects in more detail in a moment.
If an invalid queue is specified, | nval i dDest i nat i onExcepti on an will be thrown. A second
version of this method takes a message selector string as a paramter as well. Message selectors
were discussed in detail in chapter 5. By specifying a message selector, only those messages
whose header meet the criteria specified by the selector will be delivered to the receiver.

The cr eat eSender method is used to create a sender for the specified queue. If the sender
cannot be created for any reason, a JMSExcept i on will be thrown. I'll discuss queue senders
later in a moment as well. The cr eat eBr owser method is used to create a browser to peek at
the messages on a specified queue. The cr eat eBr owser methods are similar to the

cr eat eRecei ver methods. A queue browser implements the QueueBrowser interface shown
below:

public interface QueueBrowser
Queue get Queue() throws JNMSExcepti on;
String get MessageSel ector() throws JMSException;
Enuner ati on get Enuneration() throws JVSExcepti on;
void close() throws JMBExcepti on;

}

The get Queue and get MessageSel ect or methods return a reference to the queue and
message selector specified in the cr eat eBr owser methods. The cl ose method should be
called whenever a browser is no longer needed to free any resources that the JMS provider may
have allocated on behalf of this browser. This is just good programming practise in general. The
most interesting method of this interface is the get Enuner at i on method. This method returns an
enumeration of all the messsages in the queue. Actually this enumeration may be an enumeration
of the entire content of the queue or it may only contain the messages matching a message
selector if one was specified.

JMS Note

New messages may be arriving and old ones expiring while the the client is browsing the
queue using the enumeration returned by the get Enuner at i on method of the queue
browser. JMS does not require the content of an enumeration to be a static snapshot of
gqueue content. Whether these changes are visible or not depends on the JMS provider.

The createTemporaryQueue method on the QueueSession interface is used to create a temporary
queue, which we'll discuss in the next section.

Queue
As shown in figure 1 in chapter 3, the Queue interface is actually derived from the Dest i nat i on
interface. The Queue interface is shown below:

public interface Queue extends Destination {
String get QueueNane() throws JMSException;
String toString();

The get QueueNane method returns the name of the queue as used by the messaging product
while the t oSt r i ng method returns a "prettier" version of this name. As a general rule, clients
should not depend on the name returned by these methods in their code, since these names may
be provider specific and may not be the same as the name defined by the queue administrator.

Like its parent, the queue object is an administrable object as well. There are two types of queues
- long lived and temporary. JMS does not define any facilities for creating, administering, or
deleting long lived queues. These facilities are provided by the JMS provider and hence are
provider specific. Remember, JMS does define a standard way to gain access to a long lived
queue through the queue session via the cr eat eQueue method that we saw above. Temporary
queues, on the other hand can be created programmatically through the queue session via the

cr eat eTenpor ar yQueue method. Such queues are valid only with [and for the life of] the queue
connection to which the queue session used to create the temporary queue belonged. Temporary
queues implement the Tenpor ar yQueue interface shown below:

public interface TenporaryQueue extends Queue {
void delete() throws JVSExcepti on;

The del et e method is used to delete the temporary queue. If there are still existing senders or
receivers still using it, then a JMSExcept i on will be thrown. It is good programming practise to
call the del et e method on a temporary queue when it is no longer required to free up any
resources consumed by the queue.

QueueReceiver
As shown in figure 5 in chapter 3, the QueueRecei ver interface is actually derived from the
MessageConsuner interface. The QueueRecei ver interface is shown below:

public interface QueueRecei ver extends MessageConsuner {
Queue get Queue() throws JVMSExcepti on;

The get Queue method returns a reference to the queue object specified in the cr eat eRecei ver
method of the queue session. This may not be a reference to the exact same physical object.
Consider the following code fragment:

/1 queue is a valid Queue
/'l queueSession is a valid QueueSession
recei ver = queueSessi on. creat eRecei ver (queue);
queuel = receiver. get Queue();

i f (queue == queuel)

I System out. printl n("Sanme physical object.");
el se

Systemout.println("Not the sane physical object.");

Depending on the provider any one of the two statements may be printed. But the statement
queue. equal s(queuel)
should always evaluate to t r ue.

QueueSender
As shown in figure 6 in chapter 3, the QueueSender interface is actually derived from the
MessagePr oducer interface. The QueueSender interface is shown below:

public interface QueueSender extends MessageProducer {
Queue get Queue() throws JNMSExcepti on;
voi d send(Message nmessage) throws JVMSExcepti on;
void send(Message message, int deliveryMode, int priority,
long timeToLive) throws JMSException;
voi d send(Queue queue, Message nessage)
t hrows JMSExcepti on;
voi d send(Queue queue, Message nessage, int deliveryhMdde,
int priority, long tinmeToLive) throws JVMSExcepti on;

}

The get Queue method returns a reference to the queue object specified in the cr eat eSender
method of the queue session. This may not be a reference to the exact same physical object. |
discussed this above with an example code fragment. The interface has a variety of send
methods. One of the first two send methods are used when a queue is specified during the
creation of the sender using the cr eat eSender method of the queue session object. The first
method uses the default values for the delivery mode, priority, and time-to-live paramters. The
last two send methods are used when a queue is not specified during the sender creation i.e. a
nul | value is passed in to the cr eat eSender method. The first parameter to these two methods
is a valid queue to which to send the message. Note that all four send methods can never be
used in the same sender. If a queue was specified during the creation of the sender, then
attempting to use the last two send methods will throw a Unsupport edOper at i onExcept i on.
On the other hand if no queue was specified, it is quite obvious that the first two send methods
cannot be used. All send methods will throw a MessageFor mat Except i on if the there is a
formatting error in the message, an | nval i dDest i nati onExcept i on if the queue is invalid,
and a JMSExcept i on if there is any other error during the send.

An Example

Let's tie all these concepts together with an example program. This is the first complete example in
this book (Hoorah!). In this example, | will attempt to simulate a simple phone i.e. not 3—way
conferencing, call waiting, etc. Obviously, | will do this using the point—to—point messaging style of

a JMS provider, which in this case will Sun’s Java Message Queue. There is no special reason for
selecting this product over others in the market apart from the fact that | need "a" JMS provider
that supports the point-to—point messaging style and is not horrendous to install and setup. You
will also need JDK 1.1.6 or higher.

Note

The only Sun specific part of this program is how | obtain the queue connection factory. In chapter
8, | will show you a technique | use to make my JMS clients "provider independent".

When the phone is started, it is given the name of the line/user to which the phone belongs. For
example:

REM Set up the classpath. My installation of Sun's Java Message Queue
REMis in the directory E \Program Fil es\ JavaMessageQueuel. 0

set CPATH=.; E:\ Program Fi | es\ JavaMessageQueuel. O\l 1 b\ ns. | ar

set CPATH=%CPATHY E: \ Program Fi | es\ JavaMessageQueuel. O\l i b\jng.jar;

set CPATH=%CPATH% E: \ Program Fi | es\ JavaMessageQueuel. O\l i b\ | ngadni n. j ar

java —-cp "YCPATH® -Dj ava. conpil er =NONE Phone John

Here "John" is the name that this phone will be recognized with. This will result in the creation of a
command console, which the same window/shell from which the program was started and an
"Output and Information" GUI window. These windows are shown in figures 2 and 3 respectively.

C:\WIHNT\System32\cmd.exe - java -cp ".:E:\Program Files\JavaMessageQueuel D\lib\jims.jar;... [l=] E3

E:~My Documentsz>Perzonal~Articles and Papers JME Book-phone>java —cp ".;E:“Frmm
ogram Files“JavaMessageQueuel .@~1ib~jms.jar;E:“\Program Fllea\JauaHessageQueue
1.8%1ibjmg. jarsE:“\Program Files“JavaMessageQueuel .B@~1lib“jngadmin.jar' -Dj
ava.compiler=HONE Phone John

Phone Command Conszole iz peady...

cmd >

Figure 2: The phone command console window

Kl o

Figure 3: The phone Output and Information window.

There are two types of messages in this system. Control messages always begin with
"ControlMessage:XXX", where XXX is the name of an action. User messages are messages that
the user sends during normal conversation using the phone. These messages are sent using the
say command (discussed below). The upper portion of the "Output and Information” window is the
output panel and is used to display user messages. The lower portion is the information panel,
which is used for displaying control messages and other useful information.

The command console is where all the action takes place. To get a list of all supported commands,
type in "help" at the prompt. At this point you should see the following output:

Supported commands are: dial <destination>, disconnect, hangup, help, and say
<message>

Initially, the only valid commands are di al and di sconnect (and hel p of course). Typing in
disconnect ends the phone program. This is the only way to cleanly shutdown the phone program.
To dial up to another phone type in "dial" followed by the destination i.e. the user/line name of the
other phone. For example:

di al Bob

, Where "Bob" has been started up in a similar way to "John". If the phone "Bob" does not exist you
will see the following error message on the console at 15 seconds.

No Answer. Line may have been di sconnect ed.

Also, look at the information panel of the GUI window for interesting messages going back and
forth between "John" and "Bob" during the dial-up process. Don’t worry if all the messages don't
make sense right now. Trust me they will by the end of this section.

The only valid commands at this point are say, di sconnect , and hangup (and hel p of course).
Both "Bob" and "John" can send messages to each other. For example, "John" could do
something like:

say Hi, Bob! How are you doi ng?
At any point either "Bob" or "John" could end the call by typing in hangup.
So, how does all this work under the covers?

The mai n Method

Let’s start by looking at the mai n method of the program. This program takes one parameter — the
name of the line/user to which the phone belongs. | will show you how this name is important later.
This method creates a new instance of the phone passing in the name and starts an instance of
the class Mai nThr ead as follows:

/]l Create a new phone

Phone phone = new Phone(args[0]);

/] Start the main thread for the comrand consol e.
Mai nThr ead mai nThread = new Mai nThr ead(phone) ;
mai nThread. start();

The Mai nThr ead class extends the j ava. | ang. Thr ead class. This class ecapsulates the
command console functionality. Let’'s analyze this class step—-by-step:

1. Wait for the user to type in commands at the command console.
2. Process the commands and invoke the appropriate method on the phone instance. For
example, the following code processes the di sconnect command:

i f(crml.{st artsWth("di sconnect")) {
try
// Call the disconnect method on the phone.
phone. di sconnect () ;

catch(Exception e ? E
Systemerr.println(e.getMessage());

}
/1 End the JVM
/1 Don’t worry, the disconnect nethod has done all the
/1 cl eanup.
} Systemexit(-1);

The code for processing the di al and say commands is a little more involved, since both
these commands take a parameter. The code finds this parameter and passes it to the

di al and say methods on the phone respectively. The code for the di al command is
shown below:

i f(crrd.{startsWth("diaI")) {
try

/1 find the "destination" paraneter

int i = 4;

for(;i<cnd.length(); i++)

if(cmd.charAt (i) !'=" ")

br eak;
/1 Not found? That’'s an error.
if(i == cnd.length()
| Systemout.println("You nmust specifiy a destination.");
el se

/'l Pass the destination to the dial nethod.

phone. di al (cnd. substring(i));

catch(Exception e)
Systemerr.println(e.get Message());

}

The Phone Constructor
Now let’s take a look at the constructor of the Phone class. The one and only contructor does the
following, in order:

1
2.

Save the name of this user/line in the | ocal QueueNane member variable. All member
variables pertaining to this phone begin with "local".

Create and show the "Output and Information" GUI window by calling the showGUI
method.

Get the queue connection factory as follows:

connectionFactory = new .
com sun. nessagi ng. QueueConnecti onFactory();

Remember, this is the only Sun specific code in this program.
Use the connection factory to get the queue connection as follows:

connecti on = connecti onFactory. creat eQueueConnecti on();
Create five queue sessions using this queue connection as follows:

| ocal Sessi onSender = connecti on. creat eQueueSessi on(fal se, 1);
| ocal Sessi onRecei ver =connecti on. creat eQueueSessi on(fal se, 1);
| ocal Sessi onLi st ener =connecti on. creat eQueueSessi on(fal se, 1);
r enot eSessi onSender = connecti on. cr eat eQueueSessi on(fal se, 1

r enpt eSessi onRecei ver =connecti on. cr eat eQueueSessi on(fal se, 1

All sessions are non-transacted and support auto acknowledgement of messages. The

reason we have five different sessions is to support concurrent sending and receiving of
messages. Remember, the session is a single threaded object.

Note: This is probably the most important aspect of this program.

Use the | ocal Sessi onLi st ener session object to get a reference to a queue object for
the listener queue, which has the name | ocal QueueNane + "Li stener", and create
a queue receiver for this queue as follows:

j avax. j ms. Queue queue =
ocal Sessi onLi st ener. creat eQueue(l ocal QueueNane +
"Listener");
| ocal Li stener = | ocal Sessi onLi st ener. creat eRecei ver (queue);

Now start a thread instance of the class Li st ener Thr ead passing it the phone instance
(t hi s) and the | ocal Li st ener receiver. This thread will continuously wait for "Dial"
messages. The "Dial" message format is as follows:

Cont r ol Message: Di al <Nane>

, Wwhere Narre is the name of the user/line that sent the message.

When a "Dial" message is received this thread will call the di al Recei ved method on the
phone instance. The name of the remote caller is passed in as the parameter to this
method call.

Note

For each user of the phone, three queues will have to be setup. For example, if a
username is "John", the three queues would be "JohnListener", "JohnSender", and
"JohnReceiver". However, Sun’s provider automatically creates these queues when the
cr eat eQueue method is called on the queue session. So no special work is required.
See the "createQueue caveat" sidebar.

7. Finally, after all the setup work is done, the connection is started as follows:
connection.start();

The Recei ver Thr ead class

At this point let's take a look at the Recei ver Thr ead class. The constructor gets a reference to a
phone and a queue receiver. One started, this thread continuously waits for a message sent to this
receiver. If the message is a "Hangup" message, the thread will call the hangupReceived method
on the phone instance. The "Hangup" message format is as follows:

Cont r ol Message: Hangup

Any other message is considered a "user' message and is displayed in the output panel. How this
is done will be explained in the section "Multi-threaded access to the GUI components".

Now let’s take a look at the methods of phone that are critical to its operation.

The di al Method

This method is called by the command console thread when the user types in the di al command
at the command console. This method takes one parameter — the name of the remote/other
user/line to dial up. This method proceeds as follows:

1. cCallthe i sBusy method to see if the phone is busy i.e. already in use. If the phone is
busy then a PhoneException with the message "You must hangup the existing call first" is
thrown.

i f(isBusy())
t hr ow new PhoneExcepti on(
"You must hangup the existing call first.");

2. Send a "Dial" message to the remote phone’s listener. The name of the queue is the
remote user/line’s name plus "Listener". The name of this phone’s user i.e. the value of
| ocal QueueNane, is sent as part of this message. The code for this is as follows:

/1 Send a "Dial" nessage to the other phone's listener.
javax.j ms. Queue queue =

r enot eSessi onSender . cr eat eQueue(

renot eQueueNane + "Listener");

QueueSender renotelistener =

r enot eSessi onSender . cr eat eSender (queue) ;
sendMessage(r enot eSessi onSender, renoteli stener,

"Control Message: Dial " + | ocal QueueNane);

Let's go back to our earlier example in which "John" typed in the command "dial Bob" at
the command console. This would result in the message "ControlMessage:Dial John"
being sent to the BobListener queue.

Let's look at the sendMessage method. This is a helper method that takes a queue
session, a queue sender, and a string message as its parameters and sends the string
message using the provided session and sender objects as follows:

Text Message nsg = session. creat eText Message() ;
nsg. set Text (nmessage) ;
sender . send(nsg, Del | ver yMbde. NON_PERSI STENT, 9, 15000) ;

The message is sent with a timeout of 15 seconds and a non—persistent delivery mode.
This is because we don’t want messages staying around forever. But, why 15 seconds?
As you'll see in the next step, that's how long this method is going to wait for a response to
the "Dial" message. Also, reliability is not a key concern of this program, so it is safe to use
the non—persistent delivery mode.

The method now waits for 15 seconds for a response from the remote phone on the
gueue whose name is this phone’s user/line name plus "Receiver".

gueue = | ocal Sessi onRecei ver. creat eQueue(

| ocal QueueNane + "Receiver");
| ocal Recei ver = | ocal Sessi onRecei ver. creat eRecei ver (queue);
Text Message nmsg = (Text Message) | ocal Recei ver. recei ve(15000);

In our example, the queue name would be "JohnReceiver".

At this point one of four things may happen

& No message is received, which the method interprets as a sign that the requested
phone line does not exist and a PhoneExcept i on with the message "No answer.
Line may have been disconnected"” is thrown.

b. An invalid response is received, which is an error condition and a
PhoneExcept i on with the message "Invalid Control Response received" is
thrown.

C. A'"Busy" message is received. This is a message of the form
"ControlMessage:Busy". A PhoneExcept i on with the message "Line is Busy" is
thrown.

d. An"OK"message is received. This is a message of the form
"ControlMessage:OK". Go to step 5 from here.

The method uses the r enpt eSender Sessi on session object to create a queue sender
on the queue whose name is formed by taking the name of the remote phone and
appending "Receiver" to it. Why append "Receiver" and not "Sender"? Because, this is the
gueue that the remote expects to receive messages on. So that's the queue we’ll send
messages on.

/!l Send to renote’s receiver

gueue = renpteSessi onSender. creat eQueue(

renot eQueueNane + "Receiver");

renot eSender = renot eSessi onSender . cr eat eSender (queue) ;

Similarly, the method uses the r enot eRecei ver Sessi on object to create a queue
receiver on the queue whose name is formed by taking the name of the remote phone
and appending "Sender" to it. This is the queue that the remote will send messages on.
The method then creates a new instance of the Recei ver Thr ead class and gives this
queue receiver to it.

/'l Receive fromrenote's Sender.
gueue = renpteSessi onRecei ver. creat eQueue(
renot eQueueNane + "Sender");

renot eRecei ver = renpt eSessi onRecei ver. creat eRecei ver (queue) ;
r enot eRecei ver Thread =

new Recei ver Thread(thi s, renot eRecei ver);
renot eRecei ver Thread. start();

In our example, these queues would be "BobReceiver" and "BobSender" respectively.

6. Finally, the method saves the remote name to the r enpt eQueueName member variable
and marks the phone as busy.

The di al Recei ved Method

This method is called by the listener thread when a "Dial" message is received. This method takes
one parameter — the name of the remote phone user/line that sent the "Dial" message. So, in our
example, this method would be called on "Bob" in response to a "Dial" message sent by "John".

If the phone is busy, the method sends a "Busy" message back to the remote phone on the queue
whose name is formed by taking the remote phone’s user/line name and appending "Receiver" to
it. This is the queue that the remote phone expects a response to the "Dial" message. If the phone
is not busy then the method does the following:

1. Send back an "OK" message.

2. Create a queue receiver on the queue whose name is formed by taking this phone’s name
and appending "Receiver" to it. This is the queue that the remote phone will send
messages to. The method then creates a new instance of the Recei ver Thr ead class
and gives this queue receiver to it.

/1 renmpte phone will send on this queue i.e. our receiver

gueue = | ocal Sessi onRecei ver. creat eQueue(l ocal QueueNane+
"Recei ver");

| ocal Recei ver = | ocal Sessi onRecei ver. creat eRecei ver (queue);

| ocal Recei ver Thread = new Recei ver Thread(thi s, | ocal Recei ver);

| ocal Recei ver Thread. start();

In our example, this queue would be called "BobReceiver".
3. Create a queue sender on the queue whose name is formed by taking this phone’s name

and appending "Sender" to it. This is the queue that the remote phone will expect to
receive messages.

/1 renmpte will receive on this queue i.e. our sender

gueue = | ocal Sessi onSender. cr eat eQueue(l ocal QueueNane +
"Sender");

| ocal Sender = | ocal Sessi onSender. cr eat eSender (queue) ;

In our example, this queue would be called "BobSender".

The hangup Method

This method is called by the command console thread when the user types in the hangup
command at the command console. If the phone is not busy, the method throws a

PhoneExcept i on with the message "Not dialed anywhere" otherwise a "Hangup" message is
sent. Depending on which queues are being used for this connection, the receiver and sender are
closed, and the receiving thread is stopped.

The hangupRecei ved Method

This method is called by the receiver thread when it receives a "Hangup" message. This method is
exactly similar to the hangup method with the exception that it does not send a "Hangup"
message. If it did we would have an inifinite loop of "Hangup" messages going back and forth.

The di sconnect Method

This method is called by the command console thread when the user types in the di sconnect
command at the command console. If the phone is "dialed up" then this method hangs up the call
using the hangup method discussed above. It then calls the private shut down method. Together,
the hangup and shut down methods ensure a clean shutdown of the phone.

Multi-threaded access to the GUI components

Java AWT components are single threaded and hence must be accessed by only one thread at a
time. The safest way to access these components is through the thread that the JVM creates for
handling these components (surprise!). So, what I've done is create text buffers (Strings) for
holding the content to be displayed in the output and information panels. These buffers are
accessed through thread safe i.e. synchronized methods only. Any time | need to change the text
in any of the two panels, | change the appropriate text buffer and schedule a "screen update" by
calling the r epai nt method. For example,

debugText += ("Dialing out to " + renoteQueueNane + "\n");
repaint();

As a result of this call, the JVM will call the pai nt method, which | override, with the correct
thread.

public void paint(Gaphics g) {
super. pai nt(Qg);
synchronized?this)
nmessageAr eaDebug. set Text (debugText);
messageAr eal n. set Text (i nText);

}

Note how | synchronize access to the text buffers. The contents of these buffers are now shown in
the panels.

The phone application shown in its entirety is as follows:

i nport java.awt.*;
i mport |ava.awt.event.*;
i nport | avax.j ms.*;

public class Phone extends Frane {

/1 JMB Queue Rel ated nenber vari abl es

/1 Note that each sender and receiver are created using a
/] separate session. This allows concurrent sending and

/1 receiving without violating the single-threadedness

/1 of the session. (Refer to chapter 3 for a refresher?.
private QueueConnectionFactory connectionFactory = null;
private QueueConnecti on connection = null;

private String | ocal QueueNane = null;

private QueueSessi on | ocal Sessi onSender = nul|;
private QueueSessi on | ocal Sessi onRecei ver = null;
private QueueSession | ocal Sessi onLi stener = null;
private QueueSender | ocal Sender = null;

private QueueRecei ver | ocal Recei ver = null;
private QueueRecei ver | ocal Li stener = null;
private String renoteQueueNane = null;

private QueueSessi on r enot eSessi onSender = nul | ;
private QueueSessi on r enot eSessi onRecei ver = nul | ;
private QueueSender renot eSender = nul | ;

private QueueRecei ver renot eRecei ver = null;

/[This menber variable is set to true if the phone
/[is "busy".
rivate bool ean busy = fal se;

/ The three threads..

/ one thread to listen for incomng calls

/ one thread to receive nessages if the call is using the loca
/ lines and one thread to receive nessages if the call is using
Il renote lines.

/
/
p
/
/
/
/

private ReceiverThread | ocal ReceiverThread = null
private ListenerThread |ocalListenerThread = null
private Recei verThread renoteRecei ver Thread = nul |

/1l menber variables for GU.

private Text Area nessageArealn = null
private Text Area nessageAreaDebug = nul | ;
String debugText = "";

String inText = ;

public static void main(String args[]) {
if(args.length '= 1)
Systemerr.println("You nust pass in the nane for this line.");
Systemexit(-1);

try {
/]l Create a new phone

Phone phone = new Phone(args[0]);

// Start the main thread for the conmand consol e.
Mai nThr ead mai nThread = new Mai nThr ead(phone) ;
mai nThread. start ();

}

catch(Exception e) {
System out. println(e. get Message());
Systemexit(-1);

}

?ublic Phone(String | ocal QueueNane) throws JVMSException
this. | ocal QueueNane = | ocal QueueNane;
showGUI () ;

/1l Get the queue connection factory.

/[l This is the only "Sun Java Message Queue" specific code.
connecti onFactory =

new com sun. nessagi ng. QueueConnecti onFactory();

/1l Use the factory to create the queue connecti on.
connection = connectionFactory. creat eQueueConnection();

[/ setup this side’s phone line..
! Al'l sessions are non-transacted and auto ack.
ocal Sessi onSender = connecti on. creat eQueueSessi on(fal se, 1);
ocal Sessi onRecei ver = connection. creat eQueueSessi on(fal se, 1);
ocal Sessi onLi stener = connection. creat eQueueSessi on(fal se, 1);
avax. j ns. Queue queue =

| ocal Sessi onLi st ener. creat eQueue(| ocal QueueNane + "Listener");
| ocal Li stener = | ocal Sessi onLi st ener. creat eRecei ver (queue);

/
/
!
|
!
j

/1 listen for incoming calls _ _
| ocal Li stener Thread = new ListenerThread(this,|ocalListener);
| ocal Li stener Thread. start();

/1 setup renote |line receiver and sender _
renot eSessi onSender = connecti on. creat eQueueSessi on(fal se, 1);
r enot eSessi onRecei ver = connecti on. cr eat eQueueSessi on(fal se, 1);

/1 Al setup work is done so start the connection
connection.start();

synchroni zed bool ean isBusy() {

return(busy);

/1 This nethod is used to dial out to another phone.
synchroni zed void dial (String renoteQueueNane)

}

t hrows JMSException, PhoneException

/[l Only one call at a tine..
if(isBusy())
t hr ow new PhoneExcepti on(

"You nmust hangup the existing call first.");
debugText += ("Dialing out to " + renoteQueueNane + "\n");
repaint();

/1 Send a "Dial" message to the other phone’s listener.
j avax. j ns. Queue queue =

r enot eSessi onSender . cr eat eQueue(r enot eQueueNane + "Listener");
QueueSender renotelistener =

r enot eSessi onSender . cr eat eSender (queue
sendMessage(renot eSessi onSender, renoteli stener

"Control Message: Dial " + | ocal QueueNane) ;

renot eLi st ener. cl ose();

/1 Now wait for a response fromthe other phone on our receiver
/1 Wait only for 15 seconds.
queue =

| ocal Sessi onRecei ver. creat eQueue(l ocal QueueNane + "Receiver");
| ocal Recei ver = | ocal Sessi onRecei ver. creat eRecei ver (queue) ;
Text Message nmsg = (Text Message) | ocal Recei ver.recei ve(15000);
| ocal Recel ver. cl ose();

/1 What did we get back
if(nmeg == nul

t hr ow new PhoneExcepti on(

"No answer. Line nay have been di sconnected.");

el se if(nsg.get Text(). equals(Cbntrolwbssage Busy"))

t hr ow new PhoneException("Line is Busy.'
el se if(!'meg. get Text().equal s(" Cbntrolwbssage ")

t hr ow new PhoneException("Invalid Control Response received");

/1 If we got here then the connection has been established.

/1l Receive fromrenote' s Sender.
gueue =

r enot eSessi onRecei ver. cr eat eQueue(r enot eQueueNane + "Sender");
renot eRecei ver = renot eSessi onRecei ver. creat eRecei ver (queue);
r enot eRecei ver Thread = new Recei ver Thread(t hi s, r enot eRecei ver);
renot eRecei ver Thread. start();

/1l Send to renote’s receiver
gueue =

r enot eSessi onSender . cr eat eQueue(r enot eQueueNane + "Receiver");
renot eSender = renoteSessi onSender . cr eat eSender (queue) ;

/'l Remenmber who we're talking to.

thi s. renot eQueueNane = renot eQueueNane;
/1 Phone is busy now

busy = true;

/1l This nethod is called by our |istener thread

/1 when anot her phone tries to call us.
synchroni zed voi d di al Recei ved(String fromueue)

{

}

t hrows JMSException, PhoneException

debugText += ("Dial request received from" + fromueue +"\n");
repaint();

/I Depending on our status..
/1 Send a "Busy" or "OK' message to the reonote queue’s receiver
j avax. j ms. Queue queue =
| ocal Sessi onSender. cr eat eQueue(fromueue + "Receiver");
QueueSender sender = | ocal Sessi onSender. cr eat eSender (queue) ;
if(isBusy()
Isen?l\/bssage(locaISessionSender,sender,"OontroII\/bssage:Busy");
el se
sendMessage(| ocal Sessi onSender, sender, " Contr ol Message: OK") ;

/1l remote will send on this queue i.e. our receiver
queue =
| ocal Sessi onRecei ver. creat eQueue(| ocal QueueNane+" Recei ver");
| ocal Recei ver = | ocal Sessi onRecei ver. creat eRecei ver (queue);
| ocal Recei ver Thread = new Recei ver Thread(thi s, | ocal Recei ver);
| ocal Recei ver Thread. start();

/1l remote will receive on this queue i.e. our sender
queue =

| ocal Sessi onSender . cr eat eQueue(| ocal QueueNane + "Sender");
| ocal Sender = | ocal Sessi onSender . cr eat eSender (queue) ;

[l W’ re busy now...
busy = true;

}

/1 This nethod is called to hangup i.e. terninate
/1l the current call from our side
synchroni zed voi d hangup() throws JMSException, PhoneException

/1l Must be busy..
if(lisBusy())
t hr ow new PhoneExcepti on("Not di al ed anywhere.");

debugText += "Hanging up call.\n"
/1 If we initiated the call then send a "Hangup"
/1 nmessage to the other phone on the other phone’s
/'l queuesender.
i f(renoteQueueNane != nul

sendMessage(r enot eSessi onSender , r enot eSender

" Cont r ol Message: Hangup") ;

r enot eQueueNane = nul | ;

r enot eRecei ver Thr ead. st op();

renot eRecei ver Thread = nul | ;

r enot eSender . cl ose();

renot eSender = nul |;

r enot eRecei ver. cl ose();

renot eRecei ver = null;

/{ ot?erwﬁse send a hangup nessage on our queuesender
el se

sendMessage(| ocal Sessi onSender, | ocal Sender

" Cont r ol Message: Hangup") ;

| ocal Recei ver Thread. st op();

| ocal Recei ver Thread = nul |

| ocal Sender. cl ose();

| ocal Sender = nulI;

| ocal Recei ver. cl ose();

| ocal Receiver = null;

}

/1 No | onger busy.
busy = fal se;

// The other side wants to term nate this cal
synchroni zed voi d hangupRecei ved()

}

t hrows JMSException, PhoneException

/1l Must be busy..
if(lisBusy())
t hrow new PhoneException("Not di al ed anywhere.");

busy = fal se;

debugText += "Hang up request received.\n"
repaint();

/1 C eanup based on which side’s |lines are being used.
i f(renoteQueueNane !'= null) {
renot eQueueNane = nul | ;
r enot eRecei ver Thr ead. st op() ;
renot eRecei ver Thread = nul | ;
r enot eSender . cl ose();
renot eSender = nul | ;
r enot eRecei ver. cl ose();
) r enot eRecei ver = nul | ;
el se {
IocalReceiverThread.stop(?;
| ocal Recei ver Thread = nul
| ocal Sender. cl ose();
| ocal Sender = null;
| ocal Recei ver. cl ose();
| ocal Recei ver = null;

}

/1 Di sconnect this phone line.
/1 This line will no longer be avail able.
synchroni zed voi d di sconnect () {

}
/

try {
[l If the phone is busy, hangup the call first
i f(isBusy())
hangup() ;
/ Now cl eanup
shut down() ;

catch(Exception e) {
debugText += (e.getMessage() + "\n");
repaint();

/ Send a "user" nessage to the other phone.

/1 This nmethod calls the sendMessage nethod with
[l the appropriate paraneters.
synchroni zed void say(String nessage)

t hrows JMSException, PhoneException

if(lisBusy())
t hrow new PhoneException("You nust dial out first");
i f(renoteQueueNane != nul
IsendN’bssage(renDteSessionSender,renDteSender,message);
el se
sendMessage(| ocal Sessi onSender, | ocal Sender, nessage) ;

/1 Send a message using the sender
voi d sendMessage(QueueSessi on sessi on, QueueSender sender
‘ String nessage) throws JMSException

debugText += ("Sendi ng nessage + nmessage + " to queue " +
sender. get Queue() . get QueueName() + "\n");

repaint();

/]l Create a text message, set its text to the nmessage
/1l The nessage is set to expire in 15 seconds.

Text Message nmsg = sessi on. creat eText Message() ;

neg. set Text (nessage) ;

sender. send(nsg, Del | ver yMbde. NON_PERSI STENT, 9, 15000) ;

}

/1 Ceanup tine..
private void shutdown() {

tr

YogalListenerThread.stop();
| ocal Sessi onSender. cl ose();
IocalSessionReceiver.cIosegg;
| ocal Sessi onLi st ener. cl ose

r enot eSessi onSender . cl ose();
r enot eSessi onRecei ver. cl ose();
connection. cl ose();

catch(Exception e) {
debugText += (e.get Message() + "\n");
repaint();

}

/1 Show the output and information wi ndow
private void showGUJ ()
setTitl e("Phone [" + | ocal QueueNanme +
"] Qutput and Information Wndow');

Panel messagePanel = new Panel ();
nmessagePanel . set Layout (new Gri dLayout (2, 1));
nmessageAreal n = new Text Area();
messageAr eal n. set Edi t abl e(f al se);
nmessagePanel . add(nessageAr eal n) ;

messageAr eaDebug = new Text Area();

nmessageAr eaDebug. set Edi t abl e(f al se);
nmessagePanel . add(messageAr eaDebug) ;

add(nessagePanel , "Center");

Di nensi on screenSize =
Tool ki t. get Def aul t Tool kit (). get ScreenSi ze();

int HEI GHT = 350, WDTH = 410;

set Location(screenSi ze.wi dth/2 - WDTH 2,
screenSi ze. hei ght/ 2 - HEl GHT/ 2) ;

set Si ze(W DTH, HEI GHT) ;

set Visi bl e(true);

}

public void paint(Gaphics g) {
super. pai nt(Qg);
synchronized?this) {
nmessageAr eaDebug. set Text (debugText);
) messageAr eal n. set Text (i nText);
}
}

/1 This thread corresponds to the command consol e thread.

[1 1t will run for the life of the application and all ow
/1l the user to enter commands. The thread will then cal
/1 the appropriate nethods on the phone in response to
/] those conmands.
cl ass Mai nThread extends Thread {

private Phone phone = null

publ i c Mai nThread(Phone p) {
phone = p;
public void run() {
System out. printl n("Phone Command Console is ready...\n");
byte[] bytes = new byte[1000];
while(true)
System out. print ("cmd>");
int n=0;
try {
n = Systemin.read(bytes);
}
§atch(Exception e) {
if(n<=2)
conti nue;

String cnmd = new String(bytes, 0, n-2);
cmd = cnd. trim();

if(cmd.startsWth("dial")) {

try {

int i = 4;
for(;i<cnd.length(); i++)

if(cmd.charAt(i) !'=" "

br eak;

if(i == cnd.length())

| Systemout. println("You nust specifiy a destination.");
el se

phone. di al (cnd. substring(i));

}
catch(Exception e) {
Systemerr.println(e.get Message());

else if(cmd.startsWth("di sconnect”)) {

try {
phone. di sconnect ();

}
catch(Exception e) {
Systemerr.println(e.getMessage());

Systemexit(-1);

}

else if(cmd.startsWth("hangup")) {
try {

phone. hangup() ;

}
catch(Exception e) {
Systemerr.println(e.get Message());

}
else if(cmd.startsWth("help") || cmd.startsWth("?")) {
System out. println("Supported conmmands are: dial " +
"<destinati on> disconnect, hangup, help," +
and say <nessage>");

}
else if(cnd.startsWth("say")) {

try {
}nt i = 3nd | h() _)
or i <c engt e
'g(cnd. char At (i) T
br eak;
if(i ==cnmd.length())

System out. println(
"You nust specifiy a nessage.");
el se
phone. say(cnd. substring(i));

catch(Exception e) {
Systemerr. println(e.get Message());

el se {
System out. printl n("Unknown comand.\n" +
"Type help for a list of valid conmands.");
}

) }
}

/1 This thread listens for incomng calls.
cl ass ListenerThread extends Thread {
private Phone phone = null;
private QueueReceiver receiver = null

/1 The constructor gets the receiver that is the "listener"
public ListenerThread(Phone p, QueueReceiver r) {
phone = p;

receiver =r;

public void run() {
while(true) {
try
/1 Block till a nessage arrives
Text Message nsg = (Text Message)receiver.receive();

/[l Is this a "Dial" nessage?
i f(neg.getText().startsWth("Control Message:Dial")) {

/1 Find the phone that dial ed us.
String c = nsg. getText() trln()
int i = new String(" ControINbssage Dial").length();
forg ;1 <cmd. Iength() |++)
if(cnd charAt(|) '
brea
if(i ==cmd.length()) {

phone. debugText +=
"Received Dial command without a destination.\n"
phone. repaint () ;

el se
/1 and call the dial Received nethod with
/1 this phone nane.
phone. di al Recei ved(cnd. substring(i));

el se {
phone. debugText +=
("[ListenerThread] Invalid Control Message \"" +
nmsg. get Text () + "\" received.\n");
phone. repaint () ;

}

}
catch(Exception e)
synchr oni zed(phone)
phone. debugText += (e.get Message() + "\n");
) phone. repai nt ();
}
}

}
}

/1 This thread is used to receive nessages
/1 froma receiver.
cl ass Recei verThread extends Thread {
private Phone phone = null
private QueueReceiver receiver = null

/1 The constructor gets the receiver to receive from
publ i c Recei ver Thread(Phone p, QueueReceiver r) {
phone = p;
receiver =r;

public void run() {
while(true) {
try
/1 Block till a nessage arrives. W know it will be a
/] text nessage.
Text Message nsg = (Text Message)receiver.receive();

/[l Is this a "Hangup" nessage?
i f(nmeg.get Text (). equal s("Control Message: Hangup"))
phone. hangupRecei ved() ;
/1 If not then it is a "user" nmessage. Show it.
el se {
i f(phone.isBusy()) {
synchr oni zed(phone)
phone.inText += (nsg.getText() + "\n");
phone. repaint ();

}
}

catch(Exception e)
synchroni zed(phone) {
phone. debugText += (e.getMessage() + "\n");
phone. repai nt () ;

/1 Nothing too special about this exception
cl ass PhoneException extends Exception {
publi ¢ PhoneException(String nmessage) {
super (nessage) ;

Publish—-And-Subscribe Messaging

Publisher #1 Messages Subscriber #1

Mezzages :I"\
Publisher #2 Topic Subscriber #2

Wezzages :

Publisher #3 Messages Subscriber #3

Figure 4: Publish—and-Subscribe Messaging Style

As shown in figure 4, in this messaging style multiple applications connect to the messaging
product as either publishers i.e. producers or subscribers i.e. consumers of messages.

Following are the basic components/pieces of JMS involved in this style:
e The Destination is known as Topic.
e The ConnectionFactory is known as a TopicConnectionFactory.
e The Connection is known as TopicConnection.
* The Session is known as a TopicSession
» The MessageProducer is known as a TopicPublisher.
» The MessageConsumer is known as a TopicSubscriber.

Note the use of the word Topic in every piece of JMS asscociated with this style.

In the following sections I'll discuss each one of the basic pieces involved in the publish-and-
subscribe messaging stlye. Let’s start with the TopicConnect i onFact ory.

TopicConnectionFactory

As shown in figure 2 in chapter 3, the Topi cConnect i onFact ory interface is actually derived
from the Connect i onFact ory interface. The Topi cConnect i onFact ory interface is shown
below:

public interface Topi cConnecti onFactory extends ConnectionFactory {
Topi cConnecti on creat eTopi cConnection() throws JVSExcepti on;
Topi cConnecti on creat eTopi cConnection(String user Nane,
String password) throws JMSException;

As its name implies, the topic connection factory is used for creating topic connections. The

cr eat eTopi cConnect i on mentod instructs the JMS provider to create a topic connection with
default user identity. The exact meaning of the default user identity is provider specific. The other
version of the cr eat eTopi cConnect i on method takes a username and password and instructs
the JMS provider to create a topic connection with these user credentials. This version of the
method may throw a JMSSecur i t yExcept i on if client authentication fails due to a invalid
username or password. Both methods throw a JMSExcept i on if the topic connection cannot be
created.

Like its parent, the topic connection factory is an administrable object as well. JIMS does not define
any facilities for creating, administering, or deleting topic connection factories. These facilities are
provided by the JMS provider and hence are provider specific.

TopicConnection

As discussed above a topic connection is obtained through a topic connection factory. Figure 3 in
chapter 3 showed that the Topi cConnect i on interface derives from the Connect i on interface.
The Topi cConnect i on interface is shown below:

public interface Topi cConnecti on extends Connection {

Topi cSessi on creat eTopi cSessi on(bool ean transact ed,
i nt acknow edgeMbde) throws JMSExcepti on;

Connect i onConsuner createConnecti onConsuner (Topi ¢ topi c,
String messageSel ector, Server Sessi onPool sessionPool,
i nt maxMessages) throws JMSExcepti on;

Connecti onConsuner creat eDur abl eConnecti onConsuner (
Topic topic, String subscriptionNane,
String nmessageSel ector, Server Sessi onPool sessionPool,
i nt maxMessages) throws JMSExcepti on;

}

Just as the topic connection factory is a factory for creating topic connections, the topic connection
is a factory for creating topic sessions through the cr eat eTopi cSessi on method . This method
takes two parameters; the first parameter indicates whether the session is transacted and the
second parameter specifies the message acknowledgement mode. I've discussed both of these in
detail in chapters 2 and 3. This method will throw a JMSException if the connection fails to create
a session due to some internal error or a lack of support for specific transaction and/or
acknowledgement mode.

This interface also has two additional methods cr eat eConnect i onConsumner and

cr eat eDur abl eConnect i onConsuner. The JMS specification has flagged these methods as
optional methods that providers may choose not to implement and further states that these are an
expert facility that is not used by regular clients. Most providers do not implement these methods
and so | will not discuss these methods in this book.

TopicSession
As shown in figure 4 in chapter 3, the Topi cSessi on interface is actually derived from the
Sessi on interface. The Topi cSessi on interface is shown below:

public interface Topi cSession extends Session {
Topic createTopic(String topi cNane) throws JMSExcepti on;
Topi cSubscri ber createSubscriber(Topic topic)
t hrows JMBExcepti on;
Topi cSubscri ber createSubscriber(Topic topic,
String nessageSel ector, bool ean nolLocal) throws JMSExcepti on;

Topi cSubscri ber creat eDurabl eSubscri ber (Topi ¢ topic,

String nane) throws JMSException;
Topi cSubscri ber creat eDurabl eSubscri ber (Topi c topic,
String name, String nessageSel ector, bool ean nolLocal)
t hrows JMBExcepti on;

Topi cPubl i sher createPublisher(Topic topic) throws JMSException;

Tenpor aryTopi ¢ creat eTenporaryTopi c() throws JMSExcepti on;
voi d unsubscribe(String nane) throws JMSExcepti on;

}

The cr eat eTopi ¢ method is somewhat misleading. The JMS specification states that this
method is provided "for the rare cases where clients need to dynamically manipulate topic identity.
This allows the creation of a topic identity with a provider specific name. Clients that depend on
this ability are not portable."

Note — createTopic caveat

Different providers have slightly different behaviors for this method. For example, Sun’s Java
Message Queue actually allows the creation of the topic (as the name implies). Most IMS
compliant messaging products require the use of their administration facilities to actually create
the topic beforehand. This method in those providers merley lets you get a reference to the
topic to pass into other methods, such as cr eat eSubscri ber and cr eat ePubl i sher.

The cr eat ePubl i sher method is used to create a publisher for the specified topic. If the
publisher cannot be created for any reason, a JMSExcept i on will be thrown. I'll come back to
topic publishers later in this chapter.

The JMS publish—and-subsrcibe style supports two types of subscribers: Durable and Non-
durable. Non—durable subscriptions last for the lifetime of their subscriber object. This means that
a client will only see the messages published on a topic while its subscriber is active. If the
subscriber is not active, the client will miss the published messages. Durable subscriptions, on the
other hand, last beyond the lifetime of the subscriber. These subscriptions are tied not to the
object but to the object identity. A later [different] subscriber with the same identity may resume
subscription in the state left off by the previous subscriber with that identity. A JMS provider is
required to retain a durable subscription’s messages until they are either received or they expire. It
therefore follows that durable subscriptions are more "expensive" than non—-durable subscriptions.

How durable is Durable?

If a message sent to a durable subscription using non—persistent delivery mode, the message
may be lost if the subscriber is not active at the time the message is published. This is
because JMS does only provides "at most once" guarantee with non—persistent delivery,
which means the message may not be delivered at all. So, if you're using Durable
subscriptions, consider sending the messages in persistent delivery mode.

The Topi cSessi on interface provides methods to create both durable and non—-durable
subscribers. Durable subscriptions are created using the cr eat eDur abl eSubscri ber pair of
methods. Similarly, non—durable subscriptions are created using the cr eat eSubscr i ber pair of
methods. The first version of both these methods takes a reference to a topic object. The second
version of both these methods take two additional parameters — a message selector string,
nmessageSel ect or, and a boolean, noLocal . Message selectors were discussed in detail in
chapter 5. By specifying a message selector, only those messages whose header meet the criteria
specified by the selector will be delivered to the subscriber. The boolean noLocal parameter is
more interesting at this time. If the value of this parameter is true, then messages published by a
publisher will not be delivered to subscribers of the same connection. Confused? Let’s look at the
following code fragment to clarify things.

/1 Define a nessage sel ector
String soneSel ector = ?;

/1 topicConnl is a valid Topi cConnection
/] create a session using topicConnl
Topi cSessi on topi cSessionl =
t opi cConnl. cr eat eTopi cSessi on(fal se, 1);
/] create a topic using topicSessionl.
Topi c topic = topicSessionl. createTopic("MTopic"),
/] create a publisher usi ng t opi cSessi onl.
Topi cPubl i sher topi cPub = topicSessionl. createPublisher(topic);
/] create a subscriber using topicSessionl
Topi cSubscri ber topicSubl =
t opi cSessi onl. creat eSubscri ber (topi c, soneSel ector, true);

/1 topicConn2 is a valid Topi cConnection
/'l create a session using topicConn2.
Topi cSessi on topi cSession2 =
t opi cConn2. cr eat eTopi cSessi on(fal se, 1);
/] create a topic using topicSession2.
topi c = topicSession2.createTopic("MTopic");
/] create a subscriber using topicSession2.
Topi cSubscri ber topicSub2 =
t opi cSessi on2. creat eSubscri ber (topi c, soneSel ector, true);

/] create and publ i sh a nmessage that satisfies sonmeSel ector
Message nsg =
t opi cPub. publ i sh(msg)

In the above code fragment the value of the noLocal boolean parameter in the

creat eSubscri ber methods used for creating t opi cSubl and t opi cSub2 is specifed as

t rue. As a result, if both subscribers t opi cSub1 and t opi cSub2 were listening for messages at
the point t opi cPub published the message, t opi cSub1 would not receive the message since
both t opi cSubl and t opi cPub are created through the same topic connection.

The cr eat eTenpor ar yTopi ¢ method on the Topi cSessi on interface is used to create a
temporary topic, which we’ll discuss in the next section.

Finally, the unsubscri be method is used to remove a durable subscription that has been created
by a client. Invoking this method will instruct the JMS provider to delete all the state being
maintained on behalf of the durable subscriber by its provider. It is erroneous for a client to delete
a durable subscription while it has an active subscriber for it, or while a message received by it is
part of a transaction or has not been acknowledged in the session. This method will throw an

I nval i dDest i nati onExcepti on if a non—existent/invalid subscription name is specified.

Topic
As shown in figure 1 in chapter 3, the Topi c interface is actually derived from the Dest i nat i on
interface. The Topi c interface is shown below:

public interface Topic extends Destination {
String get Topi cNane() throws JMSExcepti on;
String toString();

The get Topi cNane method returns the name of the topic as used by the messaging product
while the t oSt ri ng method returns a "prettier” version of this name. As a general rule, clients
should not depend on the name returned by these methods in their code, since these names may
be provider specific and may not be the same as the name defined by the topic administrator.

Like its parent, the topic object is an administrable object as well. There are two types of topics:
long lived and temporary. JMS does not define any facilities for creating, administering, or deleting
long lived topics. These facilities are provided by the JMS provider and hence are provider
specific. Remember, JMS does define a standard way to gain access to a long lived topic through
the topic session via the cr eat eTopi ¢ method that we saw above. Temporary topics, on the
other hand can be created programmatically through the topic session via the

creat eTenpor ar yTopi ¢ method. Such topics are valid only with [and for the life of] the topic
connection to which the topic session used to create the temporary queue belonged. Temporary
topics implement the Tenpor ar yTopi ¢ interface shown below:

public interface TenporaryTopi c extends Topic {
void delete() throws JVMSExcepti on;

The del et e method is used to delete the temporary topic. If there are existing publishers or
subscribers still using it, then a JMSExcept i on will be thrown. It is good programming practise to
call the del et e method on a temporary topic when it is no longer required to free up any
resources consumed by the topic.

TopicSubscriber

Per the JMS specification, a topic session allows the creation of multiple topic subscribers per
topic and will deliver each message for that topic to each topic subscriber eligible to receive it.
Each copy of the message is treated as a completely separate message so work done on one
copy has no affect on the other; acknowledging one does not acknowledge the other; one
message may be delivered immediately while another waits for its consumer to process messages
ahead of it and so on.

As shown in figure 5 in chapter 3, the Topi cSubscri ber interface is actually derived from the
MessageConsuner interface. The Topi cSubscri ber interface is shown below:

public interface Topi cSubscriber extends MessageConsuner {
Topi ¢ get Topi c() throws JMSExcepti on;
) bool ean get NoLocal () throws JMSExcepti on;

The get Topi ¢ method returns a reference to the topic object specified in the
creat e[Dur abl e] Subscri ber method of the topic session. This may not be a reference to the
exact same physical object. Consider the following code fragment:

/1 topic is a valid Topic
/] topicSession is a valid Topi cSession

subscri ber = topicSession. createSubscriber(topic);
topi cl = subscriber. get Queue();

if(topic == topicl)

| System out. println("Sanme physical object.");

el se

Systemout. println("Not the sane physical object.");

Depending on the provider any one of the two statements may be printed. But the statement
t opi c. equal s(topicl)
should always evaluate to t r ue.
The get NoLocal method returns at r ue value if local messages are being inhibited. By default
this value is f al se. Remember, this value can be set while creating the subscriber with the

second version of the cr eat eSubscri ber and cr eat eDur abl eSubscri ber methods
descibed in the Topi cSessi on interface above.

TopicPublisher
As shown in figure 6 in chapter 3, the Topi cPubl i sher interface is actually derived from the
MessagePr oducer interface. The Topi cPubl i sher interface is shown below:

public interface Topi cPublisher extends MessageProducer {
Topi ¢ get Topi c() throws JMSExcepti on;
vol d publ i shg Message nessage) throws JMSException;
voi d publish(Message nessage, int deliveryMbde, int priority,
I ong tineTolive) throws JMSExcepti on;

voi d publ i shgTopi c topic, Message nessage) throws JVSExcepti on;
voi d publish(Topic topic, Message nessage, int deliveryhMdde,

) int priority, long tinmeToLive) throws JVSExcepti on;

The get Topi ¢ method returns a reference to the topic object specified in the cr eat ePubl i sher
method of the topic session. This may not be a reference to the exact same physical object. |
discussed this above with an example code fragment. The interface has a variety of publ i sh
methods. One of the first two publ i sh methods are used when a topic is specified during the
creation of the publisher using the cr eat ePubl i sher method of the topic session object. The
first method uses the default values for the delivery mode, priority, and time—to-live paramters and
the second version allows you to specify values for these. The last two publ i sh methods are
used when a topic is not specified during the publisher creation i.e. a nul | value is passed in to
the cr eat ePubl i sher method. The first parameter to these two methods is a valid topic to which
to send the message. Note that all four publ i sh methods can never be used in the same sender.
If a topic was specified during the creation of the publisher, then attempting to use the last two
publ i sh methods will throw a Unsupport edOper at i onExcept i on. On the other hand if no
topic was specified, it is quite obvious that the first two publ i sh methods cannot be used. All
publ i sh methods will throw a MessageFor mat Except i on if the there is a formatting error in
the message, an | nval i dDest i nati onExcept i on if the topic is invalid, and a JMSExcept i on
if there is any other error during the publish operation.

An Example

Let's tie all these concepts together with an example program. This will be a Chat program and we
will continue to use Sun’s Java Message Queue.

"'E C:AWINNTAS ystem32?4cmd._exe - java -cp ™. ;E:\Program Files\J avaMessageQueuel D\liby\jms_ jar;... [E§[=]

E:“My Documents“Perszonal“Articles and Papers“JMS Book“chat*java —cp ".;:E: \PIDE!
gram Files“JavaMeszzageQueuel B~ 1libjms. jar;E:“FProgram Flleﬂ\JauaMessageQueuei
A 1ibsjmg. jar; E:sProgram FilesswJavaMessageQueuel .@%~1ibsjmgadmin. jar" —-Djava.
compiler=HONE Chat

Chat Command Console iz ready...

cmd >he 1p

Supported commands are: connect <usep’? <chatroom>, disconnect, help, =zavy <mes
sage>, and guit

cnd>connect John JavaGuro

cmd>zay What's a good book on JHMET

cmd>disconnect

cmd >

Figure 5: The Chat Command Console window (after excuting a few commands)

E%Ehat Output and Information Window

John: Hi, [just joined this chatroom! J
John: what's a2 good book an JMS7?
John:well, it's been fun, but | must leave now.. fyve.

e o
=

Lzer John wants to joint the JavaGury chatroom.

Publishing message [Hi, | just joined this chatrooml] to topic JavaGl
Publishing message MWhat's 2 good book on JMS7T] {0 topic JavaGu
Llzer John wants to leave the JavaGuru chatroom.

Publishing message Mell, it's been fun, but | must leave now... bye.

« | f

Figure 6: The Chat Output and Information window
(after executing a few commands at the command console window)

First let me show you how to start the chat program.

REM Set up the classpath. My installation of Sun’s Java Message Queue
REMis in the directory E \Program Fil es\ JavaMessageQueuel. 0

set CPATH=.; E:\ Program Fi | es\ JavaMessageQueuel. O\l i b\jns.|ar

set CPATH=%CPATHY E: \ Program Fi | es\ JavaMessageQueuel. O\l i b\jng.jar;

set CPATH=%CPATH% E: \ Program Fi | es\ JavaMessageQueuel. O\l i b\ | ngadni n. j ar

java —-cp "YCPATH® -Dj ava. conpil er =NONE Chat

This will result in the creation of a command console, which the same window/shell from which the
program was started and an "Output and Information” GUI window. These windows are shown in
figures 5 and 6 respectively. These windows have a similar purpose to those in the phone program
discussed earlier. Once again, the command console is where all the action takes place. To get a
list of all supported commands, type in hel p at the prompt. At this point you should see the
following output:

connect <user> <chatroom> , disconnect, help, say <nessage>, and quit
Initially, the only valid commands are connect and qui t (and hel p of course). Typing in qui t
ends the chat program. This is the only way to cleanly shutdown the chat program. To join a

"chatroom" type in connect followed by a username for that chatroom and the name of the
chatroom. For example:

connect John JavaQuru

, Where "JavaGuru" is an existing chatroom. I'll discuss what "existing" means later.

The only valid commands at this point are say, di sconnect , and quit (and hel p of course). To
send a message to the chatroom you use the say command, as follows:

say What’'s a good book on JMS?
To leave the chatroom at any point use the di sconnect command.
So, how does all this work under the covers?

The mai n Method
Let’s start by looking at the mai n method of the program. This method creates a new instance of
Chat and starts an instance of the class Mai nThr ead as follows:

/]l Create the chat object
Chat chat = new Chat(g;
/[l Start the command consol e.

Mai nThr ead mai nThread = new Mai nThread(chat);
mai nThread. start();

The Mai nThr ead class extends the j ava. | ang. Thr ead class. This class ecapsulates the
command console functionality and is similar in functionality to the Mai nThr ead class discussed
in the phone example except that it processes a different command set.

The Chat Constructor
The constructor starts of by calling the showGUI method to create and display the output and
information window. It then gets a reference to a topic connection factory as follows:

/1 Get the topic connection factory. _ _
connecti onFactory = new com sun. nessagi ng. Topi cConnecti onFactory();

This is the only Sun specific code in this program. As I've mentioned several times before, in
chapter 8 | will discuss a way to not have any JMS provider specific code in your JMS
applications/clients.

The connection factory is then used to create a connection to the provider, which is then used to
create two separate sessions: one for the publisher and one for the subscriber. As we discussed in
chapter 4, JMS session objects are single-threaded. To allow concurrent publication and
subscription of messages, we must create separate sessions. Finally, after all the setup work is
complete, the connection is started.

/1l Use the factory to create a topic connection

connection = connecti onFactory. createTopi cConnecti on();

/]l Create two separate sessions —— one for the subscri ber

/1 and one for the publisher.

sessi onFor Publ i sher =

connecti on. creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOWN_EDGE) ;
sessi onFor Subscri ber =

connecti on. creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOWN_EDGE) ;
/] setup conplete, start the connection.

connection.start();

Note

In the phone example, | achieved concurrent receives and sends by creating multiple threads
i.e. | used a separate thread to receive messages from a queue and a separate thread to send
messages to the queue. In this example, | will show you another way to accomplish this - via
message listeners. Instead of creating a separate thread for message subscriptions, | will
install a message listener. Internally, the JMS provider does create another thread to service
the listener, but at least the client code is cleaner.

The connect method

Next, let's take a look at one of the key methods of the Chat class - the connect method. This
method is called by the command console when the user types in the connect command. This
method takes two parameters: a username and the name of a chatroom. The username is only
used to associate the user with the messages he sends and is not used for any
securtiy/authentication purposes. Earlier | had stated that the name of chatroom must be an
"existing" chatroom. This is because the name of the chatroom is used as the name of the topic in
the cr eat eTopi ¢ method call on the topic session as shown below:

/1 topicnanme is the chatroom . .
topi ¢ = sessi onFor Publ i sher. creat eTopi c(topi cnane) ;

Note

A topic corresponding to each chatroom name to be supported must be setup using the
admin features of the JMS provider. For example, to support a chatroom "JavaGuru", a
topic called "JavaGuru" must be setup. However, Sun’s provider automatically creates
such a topic when the cr eat eTopi ¢ method is called on the topic session. So no
special work is required. See the "createTopic caveat" sidebar.

The connect method makes sure that no other "chats" are in progress by calling the private
isConnected method. It then creates a topic as shown above and creates a publisher for this topic
as follows:

To create a subscriber for this topic, we must recreate the topic using the session object for the
subscriber. This is shown below:

/1 Recreate the topic and then create a subscriber
topi ¢ = sessi onFor Subscri ber. creat eTopi c(t opi cnane);
subscri ber = sessi onFor Subscri ber. creat eSubscri ber(topic);

Note that | do not create a durable subsciption since | do not want/need messages to be stored
when the chat client is not active. Next, | set the message listener on the subscriber as follows:

/1 Set the nessage listener on the subscriber.
subscri ber. set MessagelLi stener(this);

The message listener is the chat object itself. The Chat class implements the MessagelLi st ener
interface to allow this. Remember, this interface has one method: onMessage. The crux of this
method’s implementation is as follows:

/1 Cast the message as a text nessage.

/1l Show the contents in the output panel.

Text Message t ext Message = (Text Message) aMessage;
i nText += (textMessage.getText() + "\n");

fepai nt();

Also, note that | explicitly catch all runtime exceptions as all good message listeners should. |
discussed this in chapter 4.

The sendMessage method

This method is called by the command console in response to the say command. This method is
also called by the connect and di sconnect methods. It takes the message to publish as its
only parameter. This gist of this method is as follows:

/]l Create a Text Message, set its text content and publish it.
Text Message nmsg = sessi onFor Publ i sher. creat eText Message() ;
neg. set Text (userName + ": " + nessage);

publ i sher. publish(nsg);

The disconnect method

This method is called by the command console in response to the di sconnect command. Note
that this is not the same as the di sconnect method in the phone example in which the phone
example was terminated i.e. the phone was disconnected. That corresponds to the shut down
method (qui t command) in this case. The di sconnect method here simply undoes what the
connect method did earlier. In that regard it is similar to the hangup method in the phone
example.

The shutdown method

This method is called to end the chat example when a user enters the quit command at the
command console. If necessary, this method will call the disconnect method to stop an ongoing
chat. It then closes both topic sessions and the connection as follows:

i f(isConnected())

di sconnect () ;
/'l cl eanup.
sessi onFor Publ i sher. cl ose();
sessi onFor Subscri ber. cl ose();
connection. cl ose();

Here’s the complete listing of the Chat program

i nport java.awt.*;
i nport |ava.awt.event.*,;
i mport | avax.jns.*;

public class Chat extends Frame inplenments Messageli stener {

/1 Topic related stuff.

private String topi cNane = nul | ;

private String userNanme = nul | ;

private Topi cConnectionFactory connectionFactory = null;

private Topi cConnecti on connecti on;

private Topic topic = null;

private Topi cSessi on sessi onFor Publ i sher = nul | ;
private Topi cSessi on sessi onFor Subscri ber = null;
private Topi cPublisher publisher = null;

private Topi cSubscri ber subscriber = null;

/1 member variables for GU.
private Text Area messageAreal n;
private Text Area nessageAr eaDebug;
String debugText = "";

String inText = ;

public static void main(String args[]) {
/]l Create the chat object
Chat chat = new Chat();
/'l Start the command consol e.

Mai nThr ead mai nThread = new Mai nThread(chat);
mai nThread. start();

public Chat ()
/1 Show the GU "Qutput and Information" w ndow
showGUI () ;
try {
/1l Get the topic connection factory.
connectionFactory =
new com sun. nessagi ng. Topi cConnecti onFactory();
/1l Use the factory to create a topic connection
connecti on = connecti onFactory. createTopi cConnecti on();
/]l Create two separate sessions —— one for the subscri ber
/1 and one for the publisher
sessi onFor Publ i sher =
connecti on. creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOW_EDGE)
sessi onFor Subscri ber =
connecti on. creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOW_EDGE)

/] setup conplete, start the connection
connection.start();

}

catch(JMSException e) {
debugText += (e.getMessage() + "\n");
repaint();

}

/'l Messagelistener interface inplenentation
publ i c{ voi d onMessage(Message aMessage) {
try
/] Cast the message as a text nessage.
/1 Show the contents in the output panel
Text Message t ext Message = (Text Message) aMessage;
i nText += (textMessage.getText() + "\n");

}
catch(JMSException e) {
debugText += (e.getMessage() + "\n");

/1 catch all runtime exceptions |ike a good nessage |istener.
catch(java.lang. Runti neException e) {
debugText += (e.getMessage() + "\n");

%inally {
repai nt();

}

/1 shut down..
synchr?nized voi d shutdown() {
try
/1 if we’'re connected - di sconnect
i f(isConnected())
di sconnect () ;

/'l cl eanup.
sessi onFor Publ i sher. cl ose();
sessi onFor Subscri ber. cl ose();
connection. cl ose();

}
catch(Exception e) {
debugText += (e.get Message() + "\n");
repaint();
}
}
synchroni zed voi d connect (String usernanme, String topicnane)
t hrows JMBException, Chat Exception

/ only one chat roomat a tine.
f(isConnected()
t hrow new Chat Exception("Al ready connected as " + userName +
" to chatroom" + topicNane);

/
i

debugText += ("User " + username + " wants to joint the " +
_ topi cnane + " chatroom\n");
repaint();

/1l Create a publisher and subscriber using the

/] appropriate sessions.

topi ¢ = sessi onFor Publ i sher. creat eTopi c(topi cnane) ;
publ i sher = sessi onFor Publ i sher. creat ePubl i1 sher (topic);
topi ¢ = sessi onFor Subscri ber. creat eTopi ¢c(topi cnane);
subscri ber = sessionFor Subscri ber. creat eSubscri ber(topic);

/1 Set the nessage |listener on the subscriber
subscri ber. set Messageli stener(this);

user Name = user nane
topi cNane = topi cnane

/1 first nmessage
sendMessage("H , | just joined this chatroonm");

}

/1 The disconnect nethod. Called to disconnect fromthe
/'l chat room
synchroni zed voi d di sconnect () throws JMSException, ChatException

/1 nust be connected to di sconnect.
i f(!isConnected()
t hrow new Chat Excepti on("Not connected to any chatroom");

debugText += ("User " + userNane + " wants to |eave the " +
topi cNane + " chatroom\n");
repaint();

/'l |ast nessage
sendMessage("Well, it’s been fun, but | nust |eave now. .. bye.");

/'l cl eanup.
subscri ber. cl ose();
publi sher. cl ose();
userName = nul | ;
topi cNane = nul | ;

}

/1 Send a nmessage to the chatroom
synchroni zed voi d sendMessage(String nessage)
t hrows JMBException, Chat Exception

i f(!isConnected()
t hrow new Chat Excepti on("Not connected to any chatroom");

debugText += ("Publishing nmessage [" + nessage + "] t

otopic " +
publ i sher. get Topi c() . get Topi cNanme() + "\

n");
repaint();

I/l Create a Text Message, set its text content and publish it.
Text Message nmsg = sessi onFor Publ i sher. creat eText Message() ;
neg. set Text (userName + ": " + nessage);

) publ i sher. publish(nsg);

/! Are we connected to a chatroonf
private bool ean i sConnected() {

return(topicName != null && userNane != null);

/1 Show the output and information wi ndow.
private void showGUJ ()
setTitle("Chat Qutput and Infornmation Wndow');

Panel messagePanel = new Panel ();
nmessagePanel . set Layout (new Gi dLayout (2, 1));
nmessageAreal n = new Text Area();

messageAr eal n. set Edi t abl e(f al se);

nmessagePanel . add(nessageAr eal n) ;

messageAr eaDebug = new Text Area();

nmessageAr eaDebug. set Edi t abl e(f al se);
messagePanel . add(nessageAr eaDebug) ;

add(nessagePanel , "Center");

Di nensi on screenSize =
Tool ki t. get Def aul t Tool kit (). get ScreenSi ze();

int HEIGHT = 350, WDTH = 410;
set Location(screenSi ze.wi dth/2 -
W DTH 2, screenSi ze. hei ght/2 - HEI GHT/ 2) ;
set Si ze(W DTH, HEI GHT) ;
set Visi bl e(true);

}

public void paint(Gaphics g) {
super. pai nt(Qg);
synchronized?this)
nmessageAr eaDebug. set Text (debugText);
messageAr eal n. set Text (i nText);

}
}

}
/1 This thread corresponds to the command consol e thread.
[1 1t will run for the life of the aﬁplication and al | ow
/1 the user to enter commands. The thread will then call
/1 the appropriate nethods on the phone in response to
/1l those comands.
cl ass Mai nThread extends Thread {

private Chat chat = null;

public Mi nThread(Chat p) {
chat = p;

public void run() {
System out. println("Chat Command Console is ready...\n");

byte[] bytes = new byte[1000];
while(true)
Systemout. print("cnd>");

int n = 0;

try {
n = Systemin.read(bytes);

i:atch(Exception e) {
if(n<=2)

conti nue;
// Got a command. ..

String cnmd = new String(bytes, 0, n-2);
cmd = cnd. trim);

Wi ch conmand?
connect .
cnd. startsWth("connect")) {

ry {

/1 Get the username

Il Vhere does it start?

int i =

for |<cnd Iength() |++)
'g(cnd. char At (i) T

br eak;

if(i == cnd.length())

Systemout. println("You rmust specifiy a user”
and chatroom");

conti nue;

/1 Vhere does it end?

int j =
for(;J<cnd.length(); j+t)
if(cmd.charAt(j) ==" ")
br eak;

if(j == cmd.length()) {
Systemout. println("You nust specifiy a user"
" and chatroom");

conti nue;

/] user starts at i and ends at j.
String user = cnd. substring(i,j);

/1 Now get the chat room nane

/1 \Where does it start?

for(i=j;i<cnd.length(); i++)
if(cnd. charAt (i) !'= P)

br eak;

if(i == cnd. length())

System out. println("You nust speC|f|y a user"
" and chatroom™");

conti nue;

/1 VWhere does it end?

I =1,
for(;j<cmd.length(); j++)
'g(cnd. charAt(j) =="

br eak;
ifCj ==1){ .
Systemout. println("You rmust specifiy a user”
" and chatroom™");
conti nue;

/1 chatroomstarts at i and ends at j.
String chatroom = cnd. substring(i,j);

/'l connect..
chat . connect (user, chatroom;

}
catch(Exception e) {
Systemerr.println(e.getMessage());

/'l Process the di sconnect conmand.
else if(cnd.startsWth("di sconnect”)) {

try {
chat . di sconnect ();

catch(Exception e) {
Systemerr. println(e.get Message());

/'l Process the hel p conmand
else if(cnd.startsWth("help") || cnd.startsWth("?")
System out. println("Supported conmands are: connect <user>" +
"<chatroone, disconnect, help, say <message>, and quit");

/'l Process the say command
else if(cmd.startsWth("say")) {
try {
int i = 3;
for(;i<cnd.|ength()
i f(cnd.charAt (i)
br eak;

if(i == cnmd.length())
| Systemout. println("You nust specifiy a nessage.");
el se
chat . sendMessage(cnd. substring(i));

i++,)

}
catch(Exception e) {
Systemerr. println(e.get Message());

/'l process the quit conmand

else if(cmd.startsWth("quit")) {
chat . shut down() ;
System exit(0);

el se {
System out . printl n("Unknown conmand.\n" +
"Type help for a list of valid commands.");

/1 Nothing too special about this.
cl ass Chat Exception extends Exception {
public Chat Exception(String nessage) {
super (nessage) ;

Request/Reply Messaging

Let's go back to the phone example discussed earlier in this chapter. More specifically, let’'s return
to the details of the "Dial" message and protocol. The "Dial" message includes the name of the
user/line to send the response back to. This is essentially what IMS Request/Reply feature allows
you to do. So, in this section | will show you how to use the JMS Request/Reply feature to
accomplish the same results. Instead of going through the entire phone example again, | will
explain the changes made to use the Request/Reply feature.

Let’s start with the changes made to the di al method.

Changes to the dial method

In chapter 5, we saw that JMS provides the JMSRepl yTo message header field for specifying the
destination where a reply to a message should be sent. The dial method will change to reflect the
use of this message header field.

Now, instead of:

debugText += ("Dialing out to " + renoteQueueNane + "\n");
repaint();
/1 Send a "Dial" nmessage to the other phone' s listener.
j avax. j ms. Queue queue =
r enot eSessi onSender . cr eat eQueue(r enot eQueueNane + "Listener");
QueueSender renotelistener =
r enot eSessi onSender . cr eat eSender (queue) ;
sendMessage(r enot eSessi onSender, renoteli stener,
"Control Message: Dial " + | ocal QueueNane) ;
renot eLi st ener. cl ose();

the di al method has,
sendDi al Message(r enot eQueueNane) ;
Let's take a look at the sendDi al Message method, which is defined as follows:

private void sendDi al Message(String renot eQueueNane)
t hrows JMSException {

debugText += ("Dialing out to " + renoteQueueNane + "\n");
repaint();
j avax. j ns. Queue queue =

r enot eSessi onSender . cr eat eQueue(r enot eQueueNane +

"Li stener");

QueueSender renotelistener =

r enot eSessi onSender . cr eat eSender (queue) ;
queue = null;

debugText += ("Sendi ng nmessage Control Message: Dial to queue "
+ re(rrg)t eLi st ener. get Queue() . get QueueNane() + "\n");
repaint();

Text Message nmsg = renot eSessi onSender. cr eat eText Message() ;
nsg. set JIMSRepl yTo(reert eSessi onSender . cr eat eQueue(
| ocal QjeueNane + "Recei ver"))'
nsg. set Text (" Control Message: Dial");
renot eLi st ener. send(nsg, Del i veryl\/bde NON_PERSI STENT, 9, 15000) ;
renot eLi st ener. cl ose();

}

The major lines of code are shown in bold. After creating the message, | set the JIMSRepl yTo
header field by calling the set JMSRepl yTo method on the message. Going back to our earlier
example, if "John" was dialing out to "Bob" then the JMSRepl yTo header field value would be set
to the queue with the name "JohnReceiver". Remember, this is the queue where John expects the
response from "Bob". The "Dial" message sent to "Bob" now becomes "ControlMessage:Dial"
instead of "ControlMessage:Dial John".

Changes to the ListenerThread
So, what does "Bob" do in the the Request/Reply scenario? Let’s take a look at the listener thread
for part of the answer.

Instead of
/1 Find the phone that dial ed us.
String cnd = nsg. getText() trlrr()
int i new String(" Control l\/bssage Dial").length();
for <cnd. length(); i++)
i ;

;i
"cmd. char At (i) =
eak;

if(i ==cnd.length()) {

phone. debugText +=
) "Received Dial command wi t hout a destination.\n";

el se
/1 and call the dial Received nethod with this phone nane.
phone. di al Recei ved(cnd. substring(i));

the listener thread now has,

j avax.j ns. Queue queue = (javax.j ms. Queue) nsg. get IMSRepl yTo();
i f(queue == null)
phone. debugText +=
| "Received Dial command without a destination.\n";
el se
phone. di al Recei ved(queue) ;

Earlier, the listener thread had to parse through the "Dial" message to find the name of the
user/line dialing in. Now, that’s no longer required, since it can get a reference to the queue to
send the response to by calling the get JIMSRepl yTo method on the message. Instead of passing
the name of the user/line to the di al Recei ved method, the listener thread now passes the
queue reference to it. This requires a change to the di al Recei ved method.

Changes to the dialReceived method

This method now receives a reference to a queue to send the response. | added the following
code to the beginning of the method to extract the user/line name from this queue. The rest of the
method remains the same.

String gName = repl yQueue. get QueueNamne() ;
/1 The queue nane nust always end with "Receiver".
int i = gNane.indexX ("Recelver");
if(i <= 0)
t hr ow new PhoneException("Invalid Reply Destination " + gNane);

I/ Extract the user/line nane

/1 Call this variable "fromueue" on purpose

/1l so that the rest of the nethod doesn’t have to change.
String fromQueue = gNane. substring(0,i);

That's it! With these changes in place, the phone example now uses the JMS Request/Reply
feature.

Simulating Synchronous calls with Request/Reply

The most common use of Request/Reply is to simulate synchronous calls with asynchronous
messaging. We saw the use of the JMSRepl yTo header field above. There is another important
header field related to Request/Reply — the JIMSCor r el at i onl Dfield. | discussed this field in
chapter 5. It's main purpose is to tie a response message back to the request that resulted in the
response.

The steps required by a client to use the Request/Reply style to simulate a synchronous request in
the point-to—point messaging style are:

1. Create a temporary queue by calling the cr eat eTenpor ar yQueue method on the queue
session.

2. Set the value of the JMSRepl yTo header property equal to this temporary queue.

3. Send the message. | would recommend enabling message ID generation by calling the
set Di sabl eMessagel D method on the queue sender with a t r ue parameter.

4. Execute a blocking receive on the temporary queue i.e. call the r ecei ve method on a
gueue receiver for this temporary queue.

The steps taken by a client using the publish—and-subscribe messaging style would be identical
except that it would use the JMS objects of that domain, such as topics instead of queues, etc. To
reduce the amount of work that clients have to do, JMS provides a couple of helper classes,
QueueRequest or and Topi cRequest or that handle all the setup work required in steps 1-4.
Let's take a look at the QueueRequest or class, which is listed below for reference (The

Topi cRequest or class is similar and will not be shown or discussed):

public class QueueRequestor ({

/1 The queue session the queue bel ongs to.
QueueSessi on sessi on;
/1 The queue to performthe request/reply on.

Queue queue;
Tenpor aryQueue tenpQueue;
QueueSender sender;

QueueRecei ver receiver;

publ i ¢ QueueRequest or (QueueSessi on sessi on, Queue queue)
t hrows JMSException {
t hi s. session = session;
thi s. queue = queue;
[/l create a tenporary queue which will
/1l serve as the response destination
t enpQueue = sessi on. creat eTenpor ar yQueue() ;
/'l The sender sends on the queue specified
/1 by th client.
sender = session. creat eSender (queue);
/[l Create a receiver to receive nessages on the
/1 tenporary queue
recei ver = session. createReceiver (tenpQueue);

}

public Message request (Message nessage) throws JMSException {
/1 set the reply destination
nmessage. set JIMSRepl yTo(t enpQueue) ;
/1 send the message
sender . send(message) ;
/1 wait for a response.
return (receiver.receive());

}

public void close() throws JVSException {
/1 publisher and consumer created by
/1 constructor are inplicitly closed.
session. cl ose();
tenpQueue. del et e();

}

A client creates an instance of the QueueRequest or class passing in a queue and the session
used to create this queue. This session must be non-transacted and support either the
AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE message acknowledgement mode.
When a client wants to send a request, it simply invokes the request method on this instance
passing it the message. This message handles steps 1-4 described above. The client blocks till
the server sends a message back on the temporary queue specfied in the IMSReplyTo message
header field. The QueueRequestor class assumes that the server will always send a response and
only one such response will be sent per request. If a server sends multiple responses then the
next request sent by a client will [erroneously] get the second response sent by the server to the
first request.

Now let’s look at what the server i.e. the application receiving the message from the client, must
do to participate in the Request/Reply dance.

1. Get the reply destination from the IMSReplyTo message header field.

2. Process the message and create a response message.

3. Set the JMSCaorrelationID header field in the response message equal to the value of the
JMSMessagelD header field in the request message.

4. Send the response message to the destination obtained in step 1.

For example, a server using point-to—point messaging would do along these lines

I/l Get the reply destination.
Queue repl yQueue = (Queue) nsg. get IMSRepl yTo();

/1l Process the request nessage "nsg"?

I/l Create a response nessage and set its contents?
Message reply = ?

/1 Set the
/1 JNMSCorrel ationlD of the response == JVMSMessagel D of the request
reply.set JMsCorrel ati onl D(nsg. get IMSMessagel ()) ;

/'l Send the response back
QueueSender replier = session.createQeueSender(null);
replier.send(repl yQueue, reply);

Note how the r epl i er queue sender object is created with no queue specified. This is important
to be able to use the send method that takes a queue as its parameter. | discussed this in the
"QueueSender" section earlier in this chapter.

Finally, let's look at a compete client/server application that uses the Request/Reply feature of
JMS. The server application is capable of doing three simple types of computations — addition,
subtraction, and multiplication. A client can send the server a request message in the following
format:

Add|Subtract|Multiply [A space delimited list of numbers]
An example of a request is "Add 10 30 40.2 -15"

To start the server execute the following at a dos prompt:

REM Set up the classpath. My installation of Sun's Java Message Queue
REMis in the directory E \Program Fil es\ JavaMessageQueuel. 0

set CPATH=.; E:\ Program Fi | es\ JavaMessageQueuel. O\l 1 b\ ns. | ar

set CPATH=%CPATH% E: \ Program Fi | es\ JavaMessageQueuel. O\l i b\jng.jar;

set CPATH=%CPATHY E: \ Program Fi | es\ JavaMessageQueuel. O\l i b\ | ngadni n. j ar

java —cp "YCPATH® -Dj ava. conpi |l er =NONE Ser ver

Now let’s start a client that will send the following three requests to the server
e Add1020-152.5
e Subtract 10 20
* Multiply 10 20 6

To do so execute the following commands at a dos prompt:

REM Set up the classpath. My installation of Sun’'s Java Message Queue
REMis in the directory E \Program Fil es\ JavaMessageQueuel. 0

set CPATH=.; E:\ Program Fil es\ JavaMessageQueuel. O\l i b\jns.jar

set CPATH=%CPATHY E: \ Program Fi | es\ JavaMessageQueuel. O\l i b\jng.jar;

set CPATH=%CPATHY E: \ Program Fi | es\ JavaMessageQueuel. O\l i b\ | ngadni n. j ar

java —-cp "YCPATH® -Dj ava.conpiler=NONE Cient "Add 10 20 -15 2. 5"
"Subtract 10 20" "Multiply 10 20 6"

M CAWINNTAS ystem32hcmd.exe - java -cp ".;E:\Program Files\JavaMessageQueuel D\libyims. jar;._. [E[=] B4

E:~My Documents“Perzonal“Articles and Papers“JMS Book“ReguestReplyX*java —cp "E
.sE:wProgram FilessJavaMezzageQueuwel .@~1ib>jmz. jar;E:“Program Files JavaMesza
geQuenel .Bn1ibvjmg. jar:E:“Program Files“JavaMesszageQueuel .@~1ib*jngadmin. jar"
—Djava.compiler=HONME Server

Server iz ready and will »on for 18 minutes.

[Command] Add 18 28 -15 2.5

Performing Add

fAdding 168.8

Adding 268.8

Adding —15.08

Adding 2.5

Result of thiz command is 17.5

[Command] Subtract 18 28

Performing Subtract

Subtracting 168.8

Subtracting 20.8

Result of this command iz —-1@.@

[Command] Multiply 168 28 &6

Performing Multiply

Result of this command is 1288.8

Figure 7: The server window after the client has executed three commands

M2 CAWINHTAS pstem32vemd.exe

E:“My Documents“Perzonal“Articles and Papers“JMS Book“RegquestReplyX*java —cp “"mm
.sE:wProgram FilessJavaMezzageQueuel .@~1ib~jmz. jar;E:»Program Files JavaMezza
geQuenel .B~1ib jmg. jar:E:“Program Files“JavaMeszszageQueuel .@~1libjngadmin. jar"
E—ggagﬁ.cnmpiler=N0NE Client “Add 18 28 —15 2.5" "Subtract 168 268" "Multiply 1
Result for reguest Add 168 260 —15 2.5% i=s 17.5

Result for request Subtract 10 20 is —168.8

Rezsult for reqguest Multiply 18 28 6 i= 1200.8

E:“My Documents“Perszsonal“Articles and Papers“.JHMS Book“RegquestReplyX

Figure 8: The client window after execution

Figure 7 shows the server window after it has finished processing the three requests. Figure 8
shows the client window after the same.

The Client

Ok, time to look at how it's done. Let’s look at the client program first. By looking at the rmai n
method we'll be able to cover every aspect of the client program. So let's walk through it step-by-
step.

1. First, the mai n method checks to see if there is at least one command line parameter and
if there’s not, it prints out an error message.

/1 Must have one paranter.
if(args.length < 1)
Systemout.println("You nust pass in at least" +
" one request e.g. \"Add 40 5 31 65\"");
Systemexit(-1);

2. Next, it creates a new O i ent instance. The Cl i ent constructor is pretty straightforward.
It gets a reference to a queue connection factory, uses this to create a connection and
uses the connection to create a new session. The session is used to create a queue with
the name "ServerQueue", which is previously agreed upon name between the client and
server. Think of this as a host address/port number combination to contact a server in a
traditional RPC system. The constructor also creates an instance of a QueueRequest or
class passing it the session and the queue. This requestor class will be used to do all the
grunge work required to use Request/Reply later on. The constructor is shown below:

public dient() throws JMSException {
/1 Create a connection factory,
/1 get the connection and sessi on.
QueueConnecti onFactory connecti onFactory =
new com sun. messagi ng. QueueConnecti onFactory();
connection = connectionFactory. creat eQueueConnecti on();
sessi on = connecti on. creat eQueueSessi on(
fal se, Sessi on. AUTO_ACKNOALEDGE) ;
/1 Agreed upon queue: "ServerQueue"
Queue queue = session. creat eQueue(" Server Queue");
/1 And the requestor to help with the request/reply.
requestor = new QueueRequestor(session, queue);
/'l setup conplete.start the connection.
connection.start();

}

3. The method passes each command line parameter to the client’'s execut e method as
follows:

for(int i=0; i<args.length; i++)
Systemout.println("Result for request " + args[i] +
"is " + client.execute(args[i]));

This method does three things:
a. Create a new text message and set its content equal to the parameter passed in.

/!l Create the request nessage
Text Message nsg = session. creat eText Message() ;
neg. set Text (ser ver Comrand) ;

b. Use the requestor to make the request to the server using its r equest method.

/1 1nstead of sending the nessage directly,
/1 we will use the QueueRequestor.
Message response = requestor.request (nmsg);

C. Take the message returned by the r equest method on the requestor and return
its text content back to the caller (in this case the mai n method).

/1 The message fromthe Server should be a Text Message.

/] Return the result to the caller.
return ((Text Message)response). get Text();

4. Finally, after command line parameters have been processed, the mai n method calls
dest r oy on the client as follows:

/1 cl eanup
client.destroy();

This method will perform the cleanup work (i.e. call the close method on the session and
connection objects) required prior to shutting down the client.

Following is the the client program in its entirety:

rrBort javax.jns.*;
public class dient {

[l private nenber variables for the

/'l queue connection and session

private QueueConnection connection = null;

private QueueSessi on session = null

/1 Leverage the QueueRequestor class to nake our life easy.
private QueueRequestor requestor = null;

public static void main(String[] args) {

/1l Miust have one paranter.
if(args.length < 1)
Systemout. println("You nust pass in at least" +
" one request e.g. \"Add 40 5 31 65\"");
?ysten1exit(—1);

try {
|/ Create the client

Client client = new dient();
/] execute each request
for(int i=0; i<args.length; i++)
Systemout.println("Result for request
"is " + client.execute(args[i]));
/1 cl eanup
client.destroy();

+ args[i] +

catch(Exception e ? %
Systemerr.println(e.get Message());

}

public dient() throws JMSException {
/1l Create a connection factory,
/1 get the connection and session.
QueueConnecti onFactory connectionFactory =
new com sun. nessagi ng. QueueConnecti onFactory();
connecti on = connectionFactory. creat eQueueConnecti on();
sessi on = connecti on. creat eQueueSessi on(
fal se, Sessi on. AUTO_ACKNOALEDGE) ;

/1 Agreed upon queue: "Server Queue"
Queue queue = session.createQueue(" Server Queue");

/1 And the requestor to help with the request/reply.
requestor = new QueueRequestor(sessi on, queue);

/'l setup conplete.start the connection.
connection.start();

}

/1 Cean up funtion

public void destroy() throws JMSException {
session. cl ose();
connection. cl ose();
connection = null;

/] execute a server command.
public String execute(String serverConmand) throws JMSException {
/] Create the request nessage
Text Message nsg = sessi on. creat eText Message() ;
nsg. set Text (server Conmand) ;

/1 Instead of sending directly, we wll
/]l use the QueueRequestor.
Message response = requestor.request(nsg);

/1l The nessage shoul d be a Text Message.
/1l Return the result to the caller.
return ((Text Message)response). get Text ();

The Server

Now let’s take a look at the server program. The main method simply creates a new instance of
the Ser ver and waits for 10 minutes before exiting.

/'l Start the server.
Server server = null;

try {
|/l create a new server instance

server = new Server();
System out . println(
"Server 1s ready and will run for 10 minutes.");
// wait for 10 m nutes as stated
Thr ead. sl eep(10*60*1000) ;

I used the "10 minute sleep” algorithm (%) because | was feeling too lazy to create an elaborate
shutdown mechanism. The Ser ver constructor is similar to that of the O i ent . It gets a reference
to a queue connection factory, uses this to create a connection and uses the connection to create
a new session. The session is used to create a queue with the name "ServerQueue”, which as we
know by now is a previously agreed upon name between the client and server. This is where the
similarity ends. The Ser ver constructor proceeds by creating a queue sender without associating
the sender with any specific queue as shown below.

/1 Create a sender associated with NO queue
replier = session.createSender(null);

This means that the server program must specify the queue to send the message to as a
parameter in the send method on the sender. As we’ll see later, the server program knows which
queue to send the message to from the JMSRepl yTo header property in the message received
from the client.

The constructor also creates a receiver to receive messages from the queue and installs itself (i.e.
the Ser ver class instance) as a message listener.

/1l create a receiver and install a message |istener.
QueueRecei ver receiver = session.createReceiver(queue);
recei ver. set Messageli stener(this);

This is possible because Ser ver implements the MessagelLi st ener interface. As we know this
interface has one method onMessage. In our case this is the heart and brains of the server. So,
let's take a detailed look at this method:

1. Castthe message to a TextMessage, since this is the message type we are expecting
from the client.

/1 The request is a text nessage
Text Message txt Msg = (Text Message) nmsg;

2. Extract the command from the text message.

/] Get the command
String command = txtMsg.getText().trim);

The t r i mmethod will remove all leading and trailing white space from the command.

3. Check for the reply destination. If no destination is found it is an error condition and we
stop processing.

/1 Check for a ReplyTo topic

Queue repl yQueue = (Queue) nsg. get IMSRepl yTo();

if(replyQueue == null {
Systemerr.printin("Error: No Reply Queue Specified.");
return;

}

4. Now, parse the command. Remember the command is in the form "Add 5 10 35" i.e. the
operation name followed by any number of space separated parameters. So, first we find
the operation as follows:

/1 Get the operation.

String operation;

i PE i = next Space(0, comrand);
[i == -

Systemerr.println("No operation specified.");
return;

operation = command. substring(0,i);

We assume that there no leading whitespaces in the command. This is a valid assumption
since we called t ri min step 2. Note the use of the private helper method next Space. This
method and its corollary next NonSpace will be used throughout the parsing. The

next Space method takes a string parameter and a starting index and returns the index of
the next space or -1 if no more spaces are found. For example, if this method was passed
the string "Hello John Smith" and a starting index of 6, it would return 10. The

next NonSpace method is very similar except that it does the same for nonspaces. So if
this method was passed the same string "Hello John Smith" and a starting index of 5, it
would return 6. Note that | do not use the St ri ngTokeni zer class since there is no
guarantee that the operation name and the parameters will be separated by one and only
space each. For example, this is not considered invalid "Add 5 10". Using
StringTokeni zer in this case would be cumbersome.

Now that we know the operation to be performed, we simply get each parameter and
perform the required operation. To get the next paramter, we use the following logic:

/1l where does the next paranter start?
i = next NonSpace(i, command);
_/]{(i}c i =1—)1, then there are no nore paraneters
| == -
br eak;
/1l where does this paranter end i.e. how nmany digits
/1 does this paranter have?
| = next Space(i, command);
[l if j = -1 then this is the | ast paranter
if() ==-1)
j = command. | engt h();
/[l Gk, so the paramter starts at "i" and ends at "j"
doubl e val = new Doubl e(command. substring(i,j)). doubl eVal ue();

| told you we will rely heavily on the next Space and next NonSpace methods. Now that
we have the next (or first) parameter, we perform the operation as follows:

/[l for the first nunber, the result == the nunber.
i f(firstNunber)

firstNunber = fal se;

result = val;

/1 for all the other nunbers carry out the operation.
el se if(operation.equal s("Add"))
result += val;
el se if(operation.equal s("Subtract"))
result —-= val;
el se if(operation.equals("Miltiply"))
result *= val;

Note the special case for the first parameter for which the result is simply set to the
parameter itself. For all parameters the operation is actually performed.

5. Send the result back to the client as follows:

/1 Send the reply back to the client.

Text Message reply = session. creat eText Message();

reply. set Text (new Doubl e(result).toString());

/1 set the correlation ID == the request nessage |D.
reply.set JMsCorrel ati onl D(nsg. get JMSMessagel ()) ;

/1 send the response nessage to the specified tenp queue.
replier.send(repl yQueue, reply);

As shown above, we simply create a new text message, set the result in the message, set
the correlation ID equal to the message ID, and send the message to the specified
gueue i.e. r epl yQueue. Remember, we obtained this queue in step 3.

The last method that we need to look at is shut down. This method is called by the mai n method
after it wakes up in 10 minutes. This is shown below.

finally {

/1 cleanup before exit.

i f(server !'= null g
server. shut down() ;

/'l done...
System exit (0);

This method will ensure that the server cleans up before shutting down as shown below.

/1 method to cleanup

public void shutdown() {
tr
y/ don’t need to explicitly close the
/'l receiver. Cosing the session is enough
session. cl ose();
connection. cl ose();
connection = null;

%atch(Exception e) {
) }
Following is the server program in its entirety:
i mport javax.jns.*;
public class Server inplenments javax.jmnms.Messagelistener {

[l private nenber variables for the

/'l queue connection, session, and sender

private javax.]ns. QeueConnecti on connection = null
private javax.] ns. QieueSessi on session = null;
private javax.] ns. QueueSender replier = null;

public static void main(String argv[]) {

/[l Start the server.

Server server = null;

try {
/'l create a new server instance
server = new Server();
System out . print | n(

"Server Is ready and will run for 10 minutes.");

/[l wait for 10 minutes as stated
Thr ead. sl eep(10*60*1000) ;

catch(Exception e ? %
Systemerr.println(e.get Message());

finally {
/1 cl eanup before exit.
i f(server !'= null ;
server. shut down() ;

/1 done..
System exit (0);
}

public Server() throws JMSException {
I/l Create a connection factory,
/1 get the connection and session.
QueueConnecti onFactory connectionFactory =
new com sun. nessagi ng. QueueConnecti onFactory();
connecti on = connecti onFactory. creat eQueueConnecti on();
session = connection. creat eQueueSessi on(
fal se, javax.jns.Session. AUTO ACKNON_EDGE) ;

/]l Create the previously agreed upon queue "Server Queue"
Queue queue = session.createQueue(" Server Queue");

/1l create a receiver and install a message |istener.
QueueRecei ver receiver = session.createReceiver(queue);
recei ver. set Messageli stener(this);

/Il Create a sender associated with NO queue
/1l The queue will be specified in the send net hod
replier = session.createSender(null);

/1 setup conplete. start the connection.
connection.start();

/1 method to cleanup
public void shutdown() {
try {
session. cl ose();
connection. cl ose();
connection = null;

}
catch(Exception e) {

}

public void onMessage(Message nsg) {
try
/1l The request is a text nessage
Text Message txt Msg = (Text Message) nsg;

/1l Get the command and show it
String conmand = txtMsg.getText().trim);
Systemout.println("[Comand] " + comuand);

/1l Check for a ReplyTo topic
Queue repl yQueue = (Queue) nsg. get IMSRepl yTo();
if(replyQueue == null) {

Systemerr.printin("Error: No Reply Queue Specified."

return;

/'l Parse the command

/1 Get the operation.
Str|ng operati on;
?E i = next?p?ce(o,connand);
== -1
Systenlerr.println("hb operation specified.");
return;

operation = conmmand. substring(0,i);
Systemout.println("Performng " + operation);

/1l Get each nunber and performthe requested operation

// the result.

doubl e result = 0.0;

[/ firstNunber is true for the first nunber.
bool ean firstNunber = true;

int j;
mhlle(I=-1)
if(nexthbnSpace(l command) ;
| | ==
br eak;
j = next Space(i, command);
1f(j ==-1
j = command. | engt h();
doubl e val =

new Doubl e(conmand. substr|ng(|,1)) doublevalue()
System out.println(operation + "ing " + val);

[/ for the first nunber, the result == the nunber.
i f(firstNunber) {

firstNunber = fal se

result = val

}
/1 for all the other nunbers carry out the operation

el se if(operation. equal s("Add")

)

result += val;
el se if(operation.equal s("Subtract"))
result -= val;
el se if(operation.equals("Miltiply"))
~ result *= val;
i=j;

Systemout.printin("Result of this command is " + result);
/1 Send the nodified nessage back.

Text Message reply = session. createText Message();

reply. set Text (new Doubl e(result).toString());

/1 set the correlation | D == the request nessage |D.

reply.set JVMsCorrel ati onl D(nsg. get IMSMessagel ()) ;
/1 send the response nessage to the specified tenp queue.
replier.send(repl yQueue, reply);

catch(Exception e ? %
Systemerr. println(e.get Message());

/1 Find and return the index of the next space in string "s"
/] starting at index "start"
private int nextSpace(int start, String s) {
int i = start;
for(:i<s.length(); i++)
if(s.charAt(i) ==" ")
br eak;
if(i ==s.length())
return(-1);
return(i);

/1 Find and return the index of the next non-space
/[l in string "s" starting at index "start"
private int nextNonSpace(int start, String s) {
int i = start;
for(:i<s.length(); i++)
if(s.charAt(i) !'=" ")
br eak;
if(i ==s.length())
return(-1);
return(i);

To summarize JMS provides the following to support Request/Reply
* The JMSRepl yTo and JMSCor r el at i onl D message header fields.
* The ability to create temporary queues and topics.
* A set of helper classes for both the PTP and Pub/Sub domains that implement a basic
form of request/reply.

A Limitation of Request/Reply

From the above discussion it should be obvious that the support for Request/Reply does not come
free. Both clients and servers taking part in the Request/Reply dance are fully aware of this and do
extra work to enable this. The support provided by JMS for this is very rudimentary and fragile.
What is the protocol that a server must follow? Does the existence of a destination in the

JMSRepl yTo header field mean that the server must not send a response to the "regular"”
destination but to the one specified? Request/Reply is not something that is transparently handled
by a JMS provider; not because JMS providers cannot or will not, but because the JIMS

specification does not specify a standard way of doing this. In my opinion, this is one place where
JMS could have specified a little bit more without sacrificing its goal of portability.

Summary

In this [long] chapter, | discussed the various messaging styles supported by JMS. JMS does not
mandate the support of both point-to—point and publish—and-subscribe styles, so not all providers
may support these. However, whenever they do support a style all material discussed in this
chapter for that style will apply. In the next chapter | will talk about using XML with JMS, more
specifically sending and receiving XML messages.

Chapter 7

Using XML with JMS

What can be better than using one "hot" standard? The answer is, using two "hot" standards! The
standards | am referring to are JMS and XML. So far, this whole book has been devoted to JMS,
so let’s talk a little bit about XML.

An XML Refresher

Probably no other three-letter acronym (TLA) has become as popular as XML. XML stands for
Extensible Markup Language. The World Wide Web Consortium (W3C, another TLA) introduced
the world to XML in February 1998 with the release of the XML 1.0 specification. The W3C defines
XML as "? the universal format for structured documents and data on the Web." XML is a subset
of the Standard Generalized Markup Language (SGML)®. An important point to remember is that
XML is not a single technology; but rather a family of related and complementing technologies,
such as XSL (and XSLT), XPath, XLink, XPointer, XFragments, DOM, XML namespaces, XML
Schemas, and many more.

A major advantage of XML is that it is (as the name indicates) extensible. This means that you are
not restricted to only those features, or tags, that the W3C thought about, as is the case with
HTML. HTML is a W3C standard as well, but with HTML, the tags available to you are well defined
and cannot be changed. With XML, you can add your own tags to suit your own data.

Let's go through an example. Among other characteristics, a book has a title, an author, a
publication date, a publisher, an ISBN, and a price. To represent this as HTML, you could do the
following:

<htm >
<head><titl e>A Book</titl e></head>
<body>
<hl>Under st andi ng JM5</ h1>
<h2>py Tarak Modi </ h2>
<h3>Publ i shed by ABC, Inc. in February 2001</h3>
<h4>| SBN 0023456912</ h4>
<h4>Price $35.99 (U.S.)</h4>
</ body>
..</htm >

There are two major noteworthy points:
1. The book information has been "force fitted" in the available tags. Merely looking at the
HTML without the context of the actual content does not tell you what it is describing.
2. The HTML has the presentation logic tightly coupled with the data it is describing. This
presentation logic is used by a browser such as Netscape Navigator or Internet Explorer
(IE) to display the data to the user. As an example figure 1 shows the above html in IE5.0.

XML is different in both these ways. First, it allows you to define your own tags that suit your
domain, in essence creating your own markup language. Examples of such specialized markup
languages include the Math Markup Language (MathML) and the Commerce XML (cXML).

® And s0isHTML. In that sense, HTML and XML are siblings.

3 A Book - Microsoft Internet Explorer

J File Edt Mew Favoriter Toolz Help

Understanding JMS
by Tarak Modi

Published by ABC, Inc. in February 2001
ISBN 0023456912

Price $35.99 (U.S.)

[

Figure 1: The book in HTML as seen in IE5.0

Second, the presentation logic is completely decoupled from the actual content. For example, XSL
may be used to transform the XML data into presentable HTML.

Let's define our own version of XML for the Book. We'll call this the "BookML". There are no
established set of rules that one follows while creating a new markup language, except that it must
be the XML must well-formed and valid. I'll explain both these terms later. In BookML each
characteristic of the book will have its own tag. So we'll have a tag for title called Ti t | e, a tag for
the author called Aut hor , and so on. Using BookML, we can describe the book as follows:

<Book>
<Ti tl e>Under st andi ng JM5</Titl e>
<Aut hor >Tar ak Modi </ Aut hor >
<Publ i cati onDat e>February 2001</ Publ i cati onDat e>
<Publ i sher >ABC, | nc. </ Publ i sher >
<| SBN>0023456912</ | SBN>
<Price>35.99</ Pri ce>
</ Book>

Much better. This now looks like a book description. The above XML is said to be well formed,
since it obeys the rules of writing XML, such as each begin tag has a corresponding end tag. Also
note that unlike HTML, XML is case-sensitive. That means Titl e,titl e,andt| TLE are all
different tags. We can make further refinements to the above XML. For example, the Aut hor tag
can contain Fi r st and Last tags corresponding to the first and last name of the author; the
Publ i cat i onDat e tag can contain a Mont h and Year tag corresponding to the month and year
of publication; and the Pri ce tag can have a cur r ency attribute that determines what currency
the price is stated in. The refined XML looks like this:

<Book>
<Ti tl e>Under standing JM5</Titl e>
<Aut hor >
<First>Tarak</First>
<Last >Mbdi </ Last >
</ Aut hor >
<Publ i cati onDat e>
<Mont h>Febr uar y</ Mont h>
<Year >2001</ Year >
</ Publ i cat i onDat e>

<Publ i sher >ABC, | nc. </ Publi sher>

<| SBN>0023456912</ | SBN>

<Price currency="USD"'>35.99</Pri ce>
</ Book>

Although the above XML is well formed, it is not valid. To be considered valid, it must have a
Document Type Definition (DTD)” associated with it. A DTD is used to check the validity of an XML
document at runtime. In a sense it defines the grammar, of a language such as BookML. Let’s look
at the DTD for the BookML language

<! DOCTYPE Book [
<! ELEMENT

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

Book (Title, Aut hor, Publi cati onDat e, Publi sher, | SBN, Price) >
Titl e (#PCDATA) >

Aut hor (First,Last)>

First (#PCDATA) >

Last (#PCDATA) >

Publ i cati onDat e (Month, Year) >
Mont h (#PCDATA) >

Year (#PCDATA) >

Publ i sher (#PCDATA) >

| SBN (#PCDATA) >

Price (#PCDATA) >

] <! ATTLI ST Price currency NMIOKEN #REQUI RED>
>

The above DTD defines that Book is the root node (i.e. tag) for any valid BookML document. It
also states that a Book may have one Ti t | e, Aut hor, Publ i cati onDat e, Publ i sher, | SBN,
and Pri ce, in that order. All other elements are similar, except Pri ce, which has a mandatory
attribute called cur r ency. #PCDATA is a reserved word that means Parsed Character Data that
allows a tag to contain any text data that is not considered markup. So the text "John" is allowed
but not <John>.

Manipulating XML Programmatically

The primary APIs for accessing XML documents include the Document Object Model (DOM) and
the Simple API for XML (SAX). DOM is a W3C approved standard that provides an object model
for accessing pieces of the XML document. SAX is an event—driven API created jointly by the
members of the XML-DEV mailing list. Both APIs have their pros and cons, which | will not
discuss here. The Java DOM (JDOM) is a recent introduction that is targeted to make the DOM
more accessible to Java programmers. The Java API for XML Parsing (JAXP) is yet another API
introduced through the Java Community Process (JCP) and is also available to Java
programmers. This API allows programmers to use different SAX and DOM compliant parsers
requiring knowledge of the specific implementation of the parser. In that regard, JAXP is similar to
JMS.

Finally?

An increasing popular view of XML is that XML is just another serialization format that will never be
manipulated or viewed directly by humans. This puts XML in line with protocols such as the
General Inter—-ORB Operability Protocol (GIOP) and RPC. A major contention at this point is that
XML is simply not efficient enough when it comes to transferring data across the wire. Since XML
is a text format, and it uses tags to delimit the data, XML files are nearly always larger than
comparable binary formats. This was a conscious decision by the XML developers to leverage the
benefits of a text format, such as easier debugging of applications using XML (ever try debugging
a wire protocol such as IIOP?) and a vast base of tool support to create, edit, and maintain XML.
The disadvantages of a "bloated" serailization can usually be compensated at a different level. For
example, programs such as zip and gzip can compress files very well and very fast. Those
programs are available for nearly all platforms (and are usually free). In addition, communication
protocols such as HTTP/1/1 (the core protocol of the Web) can compress data on the fly, thus

"Itissaid that XML Schemaswill replace DTDsin the future, but that hasn't happened yet.

saving bandwith as effectively as a binary format. Examples of the more popular serialization
protocols that use XML as the serialized format are XML-RPC and the Simple Object Access
Protocol (SOAP).

Back to JMS

If you want to use XML with JMS, you're not alone. For example, one could easily perceive a
distributed system that uses a JMS provider as the distribution middleware as shown in figure 2.

EncodesDecode method
call, parameters, and
return walue as XL (eg.

SOAF, XML-RFC)

Encode/Dacode method
call, parameters, and
return walue as XhL (=g,
SOAP, XMI-RFPC)

JWS
Provider

Figure 2: A distribution system that uses JMS

Just as in any other distributed system such as CORBA or RMI, the client has access to a stub
that it thinks is the actual remote object. When the client invokes a method on the stub, the stub
creates an XML packet that represents the method call and sends this packet to the skeleton. The
skeleton parses the XML packet and invokes the method on the actual object. It then creates an
XML packet that contains the result of the invocation back and sends this packet back to the stub.
The stub parses the returned packet and returns the result to the client. The uniqueness of this
system is that the stub and skeleton use a JMS provider for sending the XML packets back and
forth.

The creators of JMS anticipated the extent to which XML would permeate the enterprise
applications of the future and created the Text Message message type to support XML. Since
XML is a text representation it can safely be transported in JMS text messages.

To further help you use XML with JMS; | have created a class Xnm JMSBr i dge that does all the
grunge work of creating a JMS message from an XML Docunent object and vice versa. | have
used JAXP in order to increase portability of the code by supporting a variety of parsers.

How JAXP provides portability

The JAXP API, contained in the j axp. j ar file, is comprised of the j avax. xnl . par sers
package. That package contains two vendor—neutral factory classes: SAXPar ser Fact ory
and Docunent Bui | der Fact or y that give you a SAX parser and a Docunent Bui | der,
respectively. The Docunment Bui | der, in turn, creates a DOM-compliant Docunment object.
The key to portability here is that the factory APIs give you the ability to plug in an XML
implementation offered by another vendor without changing your source code. The
implementation you get depends on the setting of the

j avax. xm . par ser s. SAXPar ser Fact ory and

j avax. xm . par sers. Docunent Bui | der Fact or y system properties. The default values
(unless overridden at runtime) point to Sun’s reference implementations in the com sun. xmi
package.

So how does the Xm JMSBr i dge class work? Let's start by examining the constructors. There are
two versions of the constructor. The first version is the default constructor that simply delegates to

the second version, which takes two bool ean parameters. The first bool ean parameter indicates
whether validation is turned on. To turn validation on this parameter must be t r ue. A DTD must
be specified with the XML document to use validation. The second bool ean parameter is used to
toggle the namespace support. Namespaces are an advanced XML concept beyond the scope of
this book. The constructor uses the JAXP API to create a builder object, which is an object used to
parse an XML document and return a DOM Docurent object. The constructor is shown below:

public Xm JMSBri dge(bool ean supportsVali dati on,
‘ bool ean supportsNanespace) throws JMSExcepti on

try {

/] create the factory
Docunent Bui | der Factory factory =

Docunent Bui | der Fact ory. newl nst ance();
factory. setValidating(supportsValidation);
factory. set NamespaceAwar e(support sNanespace) ;
/1 use it to get a builder.
bui l der = factory. newbDocunent Bui | der () ;

}

catch(Exception e) {
JMBException el = new JMSException(e. get Message());
el. set Li nkedException(e);
throw el;

}

When a client is manipulating XML, it will most likely do so in the form of a DOM Docunent object.
Later when the client wants to send a message containing this XML it should call the

cr eat eJMSMessage method passing in the document object. This method also takes a reference
to a session object that it uses to create a new JMS Text Message instance. It then calls the

get Xml As St ri ng method passing it the XML document object. The string returned from this call
is then placed into the text message before returning it to the caller i.e. the client. The client can
then send this message like any other JMS message.

The get Xm AsSt ri ng method deserves special attention. DOM does not define a standard way
of getting the string (text) representation of a DOM Docunent object. So this method relies on a
proprietary way of doing this. Project X is Sun’s reference implementation of JAXP, which also
includes a class Xm Docurnent inthe com sun. xni . t r ee package. This class provides a
method — wr i t e — that allows us to access the XML in text form. My implementation of the

get Xml As St ri ng method uses this method on the Xm Docunent class as shown below:

/1 Cast to Xml Docunment for wite() operation
/1 The only non-standard cl ass used 1 n the bridge.
com sun. xm . tree. Xm Docunent xm Docunent

= (com sun. xm . tree. Xm Docunent) docunent ;
[l The wite method on the Xm Docunent class
/'l takes a reference to an output stream
StringWiter witer = new StringWiter();
xm Docunent. write(witer);
/1 Return the string to the caller.
return(witer.toString());

When a client receives a message that is known to contain an XML document, it can call the

set JMSMessage method on the Xm JMSBr i dge instance passing in the received message. This
method returns a DOM Docunent object to the caller. To do so, this method calls the

get Xnml AsDOVDocument method, which uses the builder object created earlier to parse the XML
(in text form) contained in the message. This is shown below:

org. w3c. dom Docurent doc =
bui | der. parse(new org. xn . sax. | nput Sour ce(
new StringReader (xm String)));

The Xm JMSBr i dge class is shown in its entirety below:

i mport java.io.StringReader;
import java.io.StringWiter;
i mport | avax.jns.*;

i mport | avax.xm . parsers. *;
i mport org.xm.sax.*;

i mport org.w3c.dom *;

/1 The only non-standard class used in the bridge.
i mport com sun. xm . tree. Xm Docunent ;

public class Xm JMSBri dge {
private DocunentBuil der builder = null;

public Xm JMSBridge() throws JMSException
/] delegate it...
this(false,fal se);

public Xm JMSBri dge(bool ean supportsValidati on,
bool ean supportsNanmespace) throws JMSException

{
try F
I/l create the factory
Docunent Bui | der Factory factory =
Docunent Bui | der Fact ory. newl nst ance() ;
factory. setValidating(supportsValidation);
factory. set NanmespaceAwar e(support sNanespace) ;
/1 use it to get a builder.
) bui | der = factory. newDocunent Bui | der () ;
catch(Exception e) {
JMBException el = new JMSException(e. get Message());
el. set Li nkedException(e);
throw el;
}
/Il Aclient calls this nmethod to get a JM5
/1l nmessage that contains the docunent.
publ i c Text Message creat eJMSMessage(Sessi on sessi on, Docunent doc)
‘ t hrows JMSExcepti on
/] session nmust be valid
i f(session == null
t hrow new JMSExcepti on("Session cannot be null.");

String xm String = getXm AsString(doc);
Text Message txt Msg = sessi on. cr eat eText Message() ;
t xt Msg. set Text (xm String);

) return(txtMg);

/[l Aclient calls this nmethod to get the docunent
/1 contained in this nessage.
publ i c Docunment setJMsSMessage(Message nsgQ)

t hrows JMBSExcepti on

if(!'(meg instanceof TextMessage))

t hr ow new JI\/BExceptl on("Invalid nessage.");
Text Message txt Msg = (Text Message) nsg;
return get Xml AsDOVDocunent (t xt Msg. get Text ());

/1 Hel per methods.

/1 Not part of the core use of the Xm JVMBSBri dge

/1 Convert the given string into a docunent.
publ i c Docunent get Xml AsDOVDocunent (String xm String)
‘ t hrows JMSExcepti on

try {
return(buil der. parse(
new | nput Sour ce(new StringReader (xm String))));

catch(Exception e) {
JMBException el = new JMSException(e. get Message());
el. set Li nkedException(e);
throw el;

}
}
/1 Convert the given docunent into a string.

public String getXm AsString(Docunent documnent)
t hrows JMSExcepti on

try {

[l Cast to Xml Docunment for wite() operation

/1 (Not defined until DOM Level 3.)

Xm Docunment xm Docunent = (Xm Docunent) docunent;
StringWiter witer = new StringWiter();

xm Docunent. write(witer);
return(witer.toString());

}

catch(Exception e)
JMBException el = new JMSException(e. get Message());
el. set Li nkedException(e);
throw el;

}
}
}

Note that the Xml JVMSBr i dge class may be used with both point-to—point and publish—-and-
subscribe messaging styles, since there is no messaging style dependent code in this class.

Let's take a look at an example of using the Xm JMSBr i dge class. Two programs, a sender

(Xm Sender) and a receiver (Xm Recei ver), have been created. The sender program reads in
an XML file passed in as a command line parameter. It creates a DOM Docunent object from this
XML using the get Xml AsDOVDocunent method. Reading XML in from a file and then
manipulating it as a DOM Document object is typical of an application using XML. Finally, the
application is ready to send this XML as a JMS message to another application i.e. the receiver. It
does this by calling the cr eat eJVMSMessage method on the Xm JMSBr i dge class. To do so it
passes in a session object and the document object. This method returns a JIMS message to the
caller, which can then be sent like any other JMS message. Both the sender and the receiver
programs take an optional parameter to turn validation on. This value is passed into the

Xm JVMSBr i dge constructor as the first parameter. Remember, to use validation the XML must
have a DTD associated with it.

Both the sender and receiver programs are listed below for reference.

LOCEEEEEErrrriirrrri
LELEEETTTTT X Sender
FECEEEEEEE i irrri

/

/
/
/ /

~—~——

LETTTEEELTT T
RNy
HETEEELErrrd

~—~—

LECETELELErrr il
NNy
FELEEELEL i rrrrlng

~—~—

i mport javax.jns.*;
i mport org.w3c. dom Docunent ;

public class Xm Sender {

public static void main (String[] args) {

/1 Must specify a file containing xm.
if(args.length < 1)
Systemerr.println(
"You nust specify an XM. file to parse.");
Systemexit(-1);

try {
/'l Read the file and get the xnl.
String xm ="";
java.io.FiIeInPutStrean1in =
new java.io. Fil el nputStrean(args[0]);
a%te[] buf = new byte[5];

ile(true)
int len = 1n.read(buf);
if(len == -

br eak;
xm += new String(buf,0,Ien);

}

// 1s validation on?

bool ean validate = fal se

if(args.length == 2 && args[1].equal s("validate"))
val i date = true;

/'l Get the queue connection factory.
/[l This is the only "Sun Java Message Queue"
/1 specific code
/1l Note this is not part of the bridge.
QueueConnecti onFactory connectionFactory =

new com sun. nessagi ng. QueueConnecti onFactory();
QueueConnecti on connection =

connecti onFact ory. cr eat eQueueConnecti on();
QueueSessi on session =

connecti on. creat eQueueSessi on(fal se, 1);
/1l The queue nane is "Xm Queue"
Queue queue = session. creat eQueue(" Xm Queue");
QueueSender sender = session. creat eSender (queue) ;
connection.start();

/'l Create the bridge
Xm JVSBri dge bridge =
new Xm JVMSBri dge(val i date, fal se);

/1 A client gets access to sone Xml and wants to
/1 manipulate it.
Docurent docunent = bridge. get Xml AsDOVDocunent (xm) ;

[l This is the producer of the nmessage.
/1l Ask the bridge to create a JM5 nessage
/'l that contains the docunent.
Message m =
bri dge. cr eat eJMSMessage(sessi on, docunent) ;
/1l send the message
sender . send(m Del | ver yMbde. PERSI STENT, 9, 60000) ;

System out. println("Sent nessage.");
/1 A good client cleans up
session. cl ose();

) connection. cl ose();

catch(Exception e) {
e.printStackTrace();
Systemerr.println(e.get Message());

/'l Done. .

Systemexit (0);

}

NNy
LELEEEEEEEEr il Xm Recei ver NNy
NNy

i mport javax.jns.*;
i mport org.w3c. dom Docunent ;

public class Xm Recei ver {
public static void main (String[] args) {

try {

// 1s validation on?

bool ean validate = fal se

if(args.length == 1 && args[0].equal s("validate"))
val i date = true;

/1 Now sinulate what a client woul d do..

Get the queue connection factory.
This is the only "Sun Java Message Queue"
specific code
Note this is not part of the bridge.
QueueConnecti onFactory connectionFactory =

new com sun. nessagi ng. QueueConnecti onFactory();
QueueConnecti on connection =

connecti onFactory. creat eQueueConnecti on();
QueueSessi on session =
connecti on. creat eQueueSessi on(fal se, 1);
/1 The queue nane is "Xm Queue"
Queue queue = session. creat eQueue(" Xm Queue");
QueueRecei ver receiver =

sessi on. creat eRecei ver (queue) ;

connection.start();

~—— —
~—— —

/'l Create the bridge
Xm JVSBri dge bridge =
new Xm JVMSBri dge(val i date, fal se);

/1l This is the consumer of the nmessage.

Message m = receiver.receive();

/1 Ask the bridge to extract the docunent

/1 contained in the JM5 nessage.

Docunent docunent = bridge. set JIMSMessage(n) ;

System out . println(
"\ n****** Got the follow ng Xml ******\n\n" +
bri dge. get Xm AsStri ng(docunent));

/1 A good client cleans up
session. cl ose();
connection. cl ose();

}

catch(Exception e) {
e.printStackTrace();
Systemerr.println(e.get Message());

}
/1 Done. .
} Systemexit (0);
}

Sample usage

REM set the classpath for JAXP and JMS
set CPATH=.; E \dev\pc\lib\thirdparty\jaxp.jar;

set CPATH =%CPATHY% E: \ Program Fi | es\ JavaMessageQueuel. O\l i b\jns.|ar
set CPATH =%CPATHY E: \ Program Fi | es\ JavaMessageQueuel. O\l i b\ ny.|ar;
set CPATH =%CPATHY E: \ Program Fi | es\ JavaMessageQueuel. O\ | i b\ j ngadni n. j ar

REM Run the Xm Sender with validation?
java -Dj ava. conpi |l er=NONE -cp " %CPATHY® Xml Sender Book.xnl true

REM Run the Xml Receiver with validation
java -Dj ava. conpi |l er=NONE -cp " %CPATHY® Xnl Recei ver true

And finally, Book. xm is shown below:

<?xm version="1.0" encodi ng="us-ascii’ ?>
<! DOCTYPE Book [
<IELEMENT Book (Title,Author,PublicationDate,Publisher,ISBN,Price)>
<! ELEMENT Titl e (#PCDATA) >
<! ELEMENT Aut hor (First, Last)>
<! ELEMENT First (#PCDATA) >
<! ELEMENT Last (#PCDATA) >
<! ELEMENT Publ i cationDate (Month, Year) >
<! ELEMENT Month (#PCDATA) >
<! ELEMENT Year (#PCDATA) >
<! ELEMENT Publ i sher (#PCDATA) >
<! ELEMENT | SBN (#PCDATA) >
<| ELEMENT Price (#PCDATA) >
] <! ATTLI ST Price currency NMIOKEN #REQUI RED>
>
<Book>
<Titl e>Understanding JM5</Titl e>
<Aut hor >
<Fi r st >Tar ak</ Fi r st >
<Last >Mbdi </ Last >
</ Aut hor >
<Publ i cat i onDat e>
<Mont h>Febr uar y</ Mont h>
<Year >2001</ Year >
</ Publ i cat i onDat e>
<Publ i sher >ABC, | nc. </ Publi sher>
<| SBN>0023456912</ | SBN>
<Price currency="USD"'>35.99</Pri ce>
</ Book>

Summary

XML has become the lingua franca of the e-commerce world. Luckily for us, the architects of IMS
anticipated this and have not precluded the use of XML with JMS. In this chapter, I've taken their
efforts one step further and have provided a helper class to further ease the use of XML with JMS.

In the next chapter, | will discuss a practical application of using a JMS provider. | will introduce
you to space—based programming and show you how to implement your own space by leveraging

a JMS provider. This application is based on a real-world project that | have done for an eCRM
vendor, Online Insight.

Chapter 8

Space-based Programming with IMS

Until now we've focused almost all of our attention to the theoretical aspects of working with JMS.
Even the examples discussed in the previous chapter were concentrated mainly on illustrating the
technical aspects of the point-to—point, publish/subscribe, and request/reply messaging styles. In
other words those examples were somewhat academic in nature. In this chapter, | will discuss a
practical (and real world) application of a JIMS compliant messaging product that will serve to tie
together many of the concepts discussed throughout this book. This chapter requires some
background of working with distributed systems.

In chapter 1, | claimed that programming distributed systems is hard and stated some reasons
why this is so such as dealing with disparate machine architectures, operating systems, and
network issues including failures and latency. The introduction of standard middleware solutions
such as JMS has solved many of these problems. But anyone who's worked with distributed
systems long enough knows very well that there are other issues involved in the design of such
systems as well. These issues are not directly solved by existing middleware such as JMS. For
example, one of the problems of designing highly distributed systems is figuring out how these
systems discover each other. After all, the whole point of having distributed systems is to allow
flexible and perhaps even dynamic configurations to maximize system performance and
availability. So how do these distributed components of one system or multiple systems discover
each other? Furthermore, once these systems have discovered one another, how do we allow for
capabilities that yield fail-safe operation, such as rediscovery? Space based programming may
provide us with a very good answer to these questions and more.

| begin this chapter by introducing the space-based programming concept and how it may be
used towards mitigating some of the issues mentioned above. | will then discuss a technique of
converting a JMS compliant message queue into a space. A list of resources is provided at the
end of the chapter for readers interested in learning more about space—based programming and
applications.

What is a Space?

As discussed in chapter 1, conventional distributed tools rely on passing messages between
processes (asynchronous communication) or invoking methods on remote objects (synchronous
communication). A space is an extension of the asynchronous communication model. In the
space—based programming approach the two processes are not passing messages to each other.
In fact the processes are totally unaware of each other. Rather, these processes pass their
messages to an intermediary, the space.

Let's look at figure 1 for a moment. Process 1 places a message into the space. Process 2, which
has been waiting for this type of message, takes the message out the space. Process 2 processes
the message and based on the results places another message into the space. Process 3, which
has been waiting for this [second] type of message, takes this message out of the space. Based
on this we can make the following observations about this architecture:

1. The space may contain different types of messages. In fact | use the term "message" for
clarity. These messages are actually just "things", i.e. the message may be an object, an
XML document, or anything else that the space allows to be putin it. In figure 1 the
different shapes in the space illustrate the different types of messages.

2. The three processes involved have no knowledge of one another. All they know is that
they put a message in a space and get a message out of the space.

3. Asin the message passing scenario, we are not limited to two processes; rather any
number of processes may communicate via a common space. This allows the creation of
extremely loosely coupled systems that can be highly distributed and extremely flexible.

4. Because a process only takes a message out of the space when it has the processing
capacity available, this architecture results in natural load—balancing.

Process 1

Process 3
1:/Process 1 writes
ta the spoce

4:/Process 3 tokes
from the spoce

e =

2:/Process 2 takes
from the space

3:/Process 2 writes
 to the space

t Process 2

To further clarify the space concept, let me present a more detailed example. A common
encryption method is the use of "one—-way" functions, which take an input and like any other
function generate an output. The distinguishing feature of such functions is that it is extremely
difficult to compute the input that was given to the function to get the output, i.e. to compute the
inverse of the function. Hence, the term "one-way" function. So, instead of trying to figure out the
inverse of the function to get the input required for the given output, an easier way may be to take
all possible inputs and compute the output for each input. When we get an output that matches the
one we have, we have found the right "input”. But this can be extremely time consuming given the
vast number of possible inputs. Let's assume that passwords cannot be more than four characters
in length and only alphanumeric ASCII characters® are used. This gives us 14776336 possible
passwords®. Furthermore, let's use the "brute" force technique to break the password. Assume
that the main program breaks the input set into 16 pieces and puts each piece along with the
encrypted password in the space. The password—breaking programs are watching the space for
such pieces and each available program immediately grabs a piece and starts working. The
programs continue till there are no more such pieces available or until the password has been
broken. If the password is broken, the breaking program puts the solution in the space, which is
picked up by the main program. The main program then proceeds to pick up all the remaining
pieces, since it has already found the solution it needs. The main program never knew how many

Figure 1

8 Hence the character set is[079, a7z, A?Z]
°® Number of passwords = (62)* = 14776336

password-breaking programs were available nor did it know where these were located. The
password-breaking programs had no knowledge about one another or about the main program. If
there were 16 password-breaking programs available and each one was on a separate machine,
we would have had 16 machines working on breaking the password simultaneously! Also, to add
new password—breaking programs, no change to any configuration of the system is required. This
is why spaces are so good for fault-tolerance, load balancing, and scalability.

As seen above, spaces provide an extremely powerful concept/mechanism to decouple
cooperating or dependent systems. The concept of a space is not new. "Tuple spaces" were first
described in 1982, in context of a programming language called "Linda". Linda consisted of
"tuples", which were collections of data grouped together, and the "tuple space"”, which was the
"shared blackboard" from which applications could place and retrieve tuples. However, the
concept never gained much popularity outside of academia. Today, spaces may be an elegant
solution to many of the traditional distributed computing dilemmas. In fact in recognition of this fact,
JavaSoft has created its own implementation of the space concept called "JavaSpaces" and IBM
has created "T Spaces", which is much more lightweight, functional, and complex than JavaSoft's
JavaSpaces

We are now in a position to describe some of the key characteristics of a space:

1. Spaces provide shared access.

A space provides a network—accessible "shared memory" that can be accessed by many shared
remote/local processes concurrently. The space handles all issues regarding concurrent access,
allowing the processes to focus on their task at hand. At the very least spaces provide processes
with the ability to place and retrieve "things". Some spaces also provide the ability to read/peek
"things", i.e. to get the "thing" without actually removing it from the space, thus allowing other
processes to access it as well.

2. Spaces are persistent.

A space provides reliable storage for processes to place "things". These "things" may outlive the
processes that created them. This allows the dependent/cooperating processes to work together
even when they have non-overlapping lifecycles. This boosts the fault-tolerance and high
availability capability of distributed systems.

3. Spaces are associative.

Associative lookup provides processes a way to "find" the "things" that they are interested in.
Since many processes may be using/sharing the same space, there may be many different types
of "things" in the space. It is important that processes are able to get the things that they require
without needing to filter out all the "noise” themselves. Spaces allow this by allowing processes to
define filters/templates that instruct/direct the space to "find" the right "things" for that process.

These are just a few key characteristics of spaces. Many commercial space implementations,
such as the ones from JavaSoft and IBM, have additional characteristics such as the ability to
perform "transacted" operations on the space.

Creating your own space implementation

As discussed above, there are several commercial implementations of spaces available in the
market. However, | can think of some reasons for creating your own, such as:

* Budget constraints may be a big reason. Commercial space implementations tend to be
fairly expensive primarily because of the limited number of space implementations
available.

» The functionality offered by a commercial implementation may just be too much for the job
at hand. Not only may this result in a larger learning curve, it may even slow your
application down due to the sheer size of the memory footprint.

* Finally, it's always fun creating your own implementation®®x.

In this section, | will show you how to implement your own space, which | call "QSpace". This
discussion will be based on an actual implementation that | did at Online Insight**, where | am a
Lead Systems Architect. A version of this implementation is a core part of the architecture in some
of Online Insight’s products, which are successfully deployed in the real-world. At Online Insight,
we decided to create our own implementation of a space. The primary reason for our decision was
our limited set of requirements. These requirements are summarized as follows:

* The space must support shared access.

» The space must be fault-tolerant. For example, it may persist "messages put in it until
they are taken out.

» The space must provide the ability to specify a filtering template.

» The space must allow one message in the space to be accessed by only one
process/application at a time i.e. we do not support the "read/peak" operation.

* The space must perform and scale well under load*.
* The space must be not impose a limitation to what you can put in it*.
* The space must not impose size limitations on what you put in it*.

Note that the first three requirements are also key characteristics of a space.

At the same time while we were considering creating a space-based communication
infrastructure, we were also evaluating message queue type software, more specifically, Java
Message Service (JMS) implementations and we realized that we could actually build our space
facility on top of one of these queues. By using message queues that expose a JMS interface, we
allow ourselves the flexibility to switch vendors of message queues in case we discover that they
do not meet our scalability requirements, or if a better performing message queue comes along
later. This separation of implementation from interface is an important design pattern®®.

Figure 2 shows a high-level class diagram of the complete system. The class QSpacel npl is the
space implementation. This class implements the QSpace interface that defines the behavior
semantics of the space. The diagram also shows a very important interface — QSpaceFact ory -
and three classes that implement it. These three classes are used to obtain the initial queue
connection factory for three different IMS providers. Let’s take a look at the QSpaceFact ory
interface first.

0 Take thiswith agrain of salt. This comment is not meant to stir up the whole "Buy Vs Build" debate.
" Online Insight is an eCRM (electronic Customer Relationship Management) technology company with
integrated online guided selling and customer insight solutions that help sellersto sell in away that
motivates buyers to buy.

2 For requirements fanatics, this may be alittle bit too vague.

2 Unlike JavaSpaces for example, which only allows Java objects that implement the jini.net.Entry
interface to be put in the space.

14 Note however that the underlying hardware, e.g. Disk space, available memory, etc. may impose a
limitation.

!5 See the Bridge design pattern in Design Patterns, Elements of Reusable Object—Oriented Software,
Gammaet al.

|:|:| interface

QSpace

QSpaceException persistentboolean

name:String

A

OSpacelkitils I
QSpacelmpl
persistenthaolean
name:String
interface Fi G Fact I
SundSpaceFactondmpl QS paceFactory loranoQ@spaceFactoryimp
—_— {::p -

3
I
I

SonicO5%paceFactoryimpl

Figure 2: A class diagram for the QSpace implementation

Getting the Initial Queue Connection Factory

Remember that the JMS specification does not define a standard way of getting the initial queue
connection factory, which is an instance of a class that implements the

j avax. j ms. QueueConnect i onFact ory interface. As a result, each vendor that provides a
JMS compliant messaging product must define their own way of allowing clients to get this initial
gueue connection factory.

In all the examples discussed in the previous chapter, | was tied to Sun’s Java Message Queue as
far as getting the initial queue/topic connection factory. However, as I've emphasized throughout
the book, this is not a desirable situation to be for a commercial product, or piece of a commercial
product®, such as for QSpace. QSpace uses a JMS compliant provider's point-to—point
messaging style. In order to be able to switch out message queues, | have defined an interface,
(spaceFact ory, as follows:

public interface QSpaceFactory {
public javax.jms.QueueConnectionFactory
getQueueConnectionFactory(java.util. Properties props)

%8 Not that Sun is a bad company to betied to *

throws javax.jms.JMSException;

}

This interface has one method, get QueueConnect i onFact ory, that returns the initial queue
connection factory. This method gets an instance of aj ava. uti |l . Properti es object as its
parameter, which contains all the vendor specific messaging product information that the class
implementing this interface will require to get the queue connection factory. One such class that
implements the QSpaceFact ory interface is created for every vendor's messaging product that
is to be supported. For simplicity | will refer to such a class as the factory class. In this chapter, |
will show you three such classes, one for Sun Microsystem’s Java Message Queue, one for
Progress Software’s SonicMQ, and one for Fiorano’s FioranoMQ.

QSpaceFactory Implementation for Sun Microsystem’s Java Message Queue
Let’s look at the implementation of the class, SunQ@SpaceFact or yl npl, for Sun Microsystem’s
Java Message Queue product first.

public class Sun@SpaceFactoryl npl inplenents SpaceFactory {
public javax.|nms. QueueConnecti onFact or?/
get QueueConnecti onFactory (java.util.Properties
props) throws javax.jns. JMSException {

javax.jms.QueueConnectionFactory factory =
new com.sun.messaging.QueueConnectionFactory();
return(factory);

}

In this case, the queue connection factory returned is an instance of the class
com sun. messagi ng. QueueConnect i onFact ory, which is provided by Sun as part of their
messaging product.

Note that the properties object passed in as a parameter is not used in this case. This
implementation assumes that the "message router" is running on the same machine as the space.
The class com sun. nessagi ng. QueueConnect i onFact or y has an alternate version of the
constructor if the "message router" is actually running on a different machine. This constructor
takes aj ava. | ang. Obj ect as its parameter as shown below:

public javax.|ms. QueueConnecti onFact or
QueueConnecti onFactory(j ava.l ang. Obj ect config)

The conf i g parameter can take two forms: a string array and aj ava. uti |l . Properti es
instance. The main configuration parameters are:

"—-s"; defines on what host the router is running (default is localhost).

"-n": defines the subnet on which the application and router
communicate. If the number that follows —n is positive then it is a subnet
identifier

and added as an offset to a base communication port number of 9312.
The default subnet is 0. For example if "—n 2" is specified then the subnet is 2
and the port is 9314. If the number that follows —n is negative then it is read
as a positive value explicitly identifying the communication port number rather
than a subnet. For example if "-n-4096" is specified then the port is 4096.

To pass these parameters as aj ava. util . Properti es instance, you would do something
along these lines:

Properties configProps = new Properties();
configProps. put("-s", "Newton");

configProps. put("—-n", "-4096");
To pass these parameters as a string, you would do something along these lines:
String configString = "—— -sNewton -n-4096";
The "-="is important and must be the String element preceeding the parameters.

In both the above cases, | am informing Sun’s JMS provider that the "message router" is running
on the host "Newton" and is available at port 4096.

The information necessary for creating the conf i g parameter can be made available in the
properties object passed in as the parameter to the get QueueConnect i onFact or y method. |
will discuss how this can be done later in this chapter in the section "The QSpace Properties File".

QSpaceFactory Implementation for Progress Software’'s SonicMQ
Now let’s look at the implementation of a similar class, Soni cQ@SpaceFact or yl npl , for Progress
Software’s SonicMQ messaging product.

public class Soni cQSpaceFactorylnpl inplenents SpaceFactory {
public javax.ms. QueueConnect i onFactory
get Connecti onFactory(java. util.Properties props)

t hrows javax.jns. JMSException {

j avax. j ns. QueueConnecti onFactory factory =
new progress. nessage. j client. QueueConnecti onFact ory(

props. get Property(" SpaceBroker"));

return?factory);

}

Progress also provides a class, pr ogr ess. nessage. j cl i ent. QueueConnecti onFactory,
which encapsulates the queue connection factory. However, unlike the case with Sun, this class
always needs a parameter that tells it which "message broker" to connect to, even if the broker is
on the same host. For example, a parameter value of "localhost:2506" implies that the broker is
available on the local machine at the port 2506. Our implementation of QSpaceFact or y gets this
information from the properties object passed in as a parameter. | will discuss how this property
actually got into the properties object, later.

QSpaceFactory Implementation for Fiorano’s FioranoMQ
Finally, let's look at the implementation of the same class, Fi or anoQ@SpaceFact oryl npl , for
Fiorano’s messaging product.

import fiorano.jns.rtl.*;
public class FioranoQ@paceFactoryl npl inplenents Q@SpaceFactory {
public javax.jnB.CpeuernnectionFactorY
get QueueConnecti onFactory(java. util.Properties props)
throws javax.jns. JMSException {
fiorano.jnms.rtl.Fioranolnitial Context ic = null
ic = new fiorano.jns.rtl.Fioranolnitial Context();
ic.bind ();
j avax. j ns. QueueConnecti onFactory factory =
(javax.j ms. QueueConnect i onFact ory)
i c. | ookup(props. getProperty("QCFactoryName").trim));
i c.dispose();
return(factory);

}

A major difference here is that Fiorano doesn’t provide any [documented] way of directly creating a
class that implements the j avax. j ms. QueueConnect i onFact ory interface, as in the other

two cases discussed above. Instead, we start by creating an instance of a

Fi oranol ni ti al Cont ext object. This object is used to bind i.e. connect to the server to create
a special connection that can be used to lookup the queue connection factory (and other
administered objects). The call i c. bi nd() connects to the FioranoMQ server on the local
machine by default. If you wish to connect to a FioranoMQ server on a remote machine, you must
use the calli c. bi nd(I net Address serverNane, int port), which connects to the server
at the supplied IP address and port number. Now, we can lookup the queue connection factory
object using the | ookup method on the context. This factory is the object that will be returned to
the caller. The | ookup method takes a string as parameter and looks up a database of
administered objects on the Fiorano JMS Server for an object whose name matches the string.
The name of the queue connection factory passed to the | ookup method is obtained from the
properties object. Once again, how this property got into the properties object is discussed later.
Before returning to the caller, though, we clean up by calling the di spose method on the context
object.

At this point, a discussion of the mysterious "properties object" passed into the
get QueueConnect i onFact ory call is warranted.

The QSpace Properties File

Each space is configured through a properties file. A properties file is a file containing name/value
pairs in the form, name = val ue. Each new line indicates a new property. Comments begin with
a "#" character in the first column of a line.

One property in this properties file is the fully qualified'” name of the class that implements the
QSpaceFact or y interface. As we already know, there is one such class for each JMS
implementation supported by the space. By doing this, changing the underlying message queue
used by the space is simply a matter of changing the name of the Java class in the properties file
for the space. Therefore, if one vendor’'s message queue does not live up to our expectations we
can quickly switch to another one.

The properties in the properties file can be categorized into two categories: 1) properties used by
the space implementation itself and 2) properties used by the factory class, such as the
Sun@@SpaceFact oryl npl class discussed previously. When the space implementation calls the
get QueueConnect i onFact or y method on the factory class, it passes a properties collection to
the method. This properties collection contains all the properties in the properties file. This allows
the factory class to get at any and all the configuration information that it needs.

An example properties file that | use is shown below:
Fil enane: gspace. properties

SpaceNane=Mbdi Space
Al lowFil ter=true
Per si st ent =f al se

Debug=t rue

The factory to use to get the initial Connection Factory
#(QSpaceFact or y=Soni cQSpaceFact oryl npl

#(SpaceFact or y=SunQSpaceFact or yl npl

QSpaceFact or y=Fi or anoQ@SpaceFact oryl npl

Sonic MQ specific property
SpaceBr oker =| ocal host : 2506

Fiorano MQ specific property
(CFact or yName=pr i mar yqcf

1 name of the class with the package names included in dot notation

Don't worry if a few of the properties don’t make sense right now. I'll discuss each one below.

The "QSpaceFactory" Property

First let's focus on the QSpaceFact ory property. As discussed earlier, this property instructs the
space on which factory class to use. Currently, the space is configured to use Fiorano’s
messaging product. To use another messaging product, for example, Progress’ SonicMQ, simply
comment out the current QSpaceFact ory property and uncomment the @SpaceFact ory
property corresponding to the Soni cQSpaceFact or yl npl class as follows:

The factory to use to get the initial Connection Factory
(SpaceFact or y=Soni cQSpaceFact or yl npl

#QSpaceFact or y=SunQSpaceFact oryl np

#QSpaceFact or y=Fi or anoQ@SpaceFact or yl npl

The SpaceBr oker property is specific to SonicMQ and is only used by the
Soni cQSpaceFact or yl npl class. The space does not know or care about this property.
Similarly, the QCFact or yNane property is specific to Fiorano.

Let's return to the discussion that we left off about adding properties that the conf i g object for
Sun’s Java Message Queue would need to connect to a "message router" on another machine,
"Newton" on port 4096. Simply add a property as shown below to the properties file:

SunConfi gurati on=—— -sNewt on -n-4096
And modify the Sun@SpaceFact or yl npl class as follows:

public class Sun@SpaceFactoryl npl inplenents SpaceFactory {
public javax.|ms. QueueConnecti onFactory
get Connecti onFactory(java. util.Properties props)
throws javax.jns. JMSException {

javax.jms.QueueConnectionFactory factory =
new com.sun.messaging.QueueConnectionFactory(

props.getProperty("SunConfiguration"));
return(factory);

}

That's it! Pretty easy.

The "QSpaceName" Property

Each space instance has a unique name that identifies that instance. This name corresponds to
the @spaceNane property in the properties file. In the properties file shown above the space name
is "ModiSpace".

The "Persistent” Property

Each space can also be configured to be persistent or not. If a space is persistent, then each
message placed inside that space will be persisted to permanent™® storage until it is taken out. This
provides the space with its fault tolerance. However, not all spaces will require this level of fault
tolerance and if so, the persistence will only be a bottleneck for those spaces. So, the persistence
can also be turned off on a space by space basis. This is achieved via the Per si st ent property
in the properties file. If the value of this property is "true", the space instance will be persistent. In
the properties file shown above the space is not persistent.

The "AllowsFilter" Property

18 at least more permenent than RAM. Examples include writing out to a database on the disk.

Each space can also be configured to allow filtering or not. Filtering allows clients of the space to
specify the criteria (i.e. message selector in our case) that must be satisfied for a message to be
returned to that client. However, if this feature is not required for a particular instance of a space, it
will be a performance bottleneck. So, once again, | have provided the ability to turn this feature
on/off on a space by space instance basis. This is achieved via the Al | owFi | t er property in the
properties file. If the value of this property is "true", the space instance will support filtering. In the
properties file shown above the space allows filtering.

The "Debug" Property

The properties file also includes a Debug property. If the value of this property is "true" then
"informational" messages will be seen on the console window of the space. These messages are
useful to trace through and understand the workings of the space. In the properties file shown
above "debugging" is turned on.

Note:

Our implementation of the space gains all of its persistence and filtering capabilities from the
underlying messaging product. The space relies on the messaging product’s Point-to—Point
messaging support and is the only client of the message queue.

The QSpace Interface

I am a big fan of "interface—based" programming. Rather than being tied to an implementation,
interface—based programming ties you to a firm behavioral contract between your program and the
interface. The primary advantage of this is that it allows you to swap implementations out with
better versions without changing all the other programs that depend on it. Isn’t this exactly what
JMS allows us to do? Yes, it is and as I've mentioned several times in this book, that's one of the
reasons it's so powerful.

Each instance of QSpace will implement the following interface

import java.rm.Renote, .
i mport |ava.rm .RenpteException;
import java.util.Properties;

public interface QSpace extends Renpte {

/1 Methods to put "things" in the space
public void wite(byte[] bl ob)

t hrows (SpaceException, RenoteException;
public void wite(byte[] blob, Properties filters)

t hrows (SpaceException, RenoteException;

/1 Methods to get "things" out of the space
public byte[] take()
t hrows (SpaceException, RenoteException;
public byte[] take(String filterAsString)
t hrows (SpaceException, RenoteException;
public byte[] take(long tineout)
t hrows (SpaceException, RenpteException;
public byte[] take(String filterAsString, [ong tineout)
t hrows (SpaceException, RenoteException;

/1 Methods to get the space characterstics

public String getNane() throws RenoteException;

publ i c bool ean i sPersi stent t hrows Renpt eExcepti on;
public bool ean allowsFilter t hr ows Renot eExcepti on;

/1 Shut down net hod
public void shutdown() throws RenoteException;

Notice how the wr i t e and t ake methods take an array of bytes as their parameter. Hence
anything that can be represented as a stream of bytes, such as a CORBA object IOR, a serialized
Java object, an XML document, etc. can be stored in the space and retrieved. This is in tune with
our requirement that the space not limit what can be put into it. Also, note that all versions of the
wri t e and t ake methods throw a QSpaceExcept i on in addition to the standard

Renot eExcept i on that is required to be thrown by all RMI remote methods. The definition of
QSpaceExcept i on is shown below:

public class QSpaceException extends java.lang. Exception {
public QSpaceException(String s) {
super (s);

}

Let's look at the semantics of each method before moving on to the actual implementation.

The write methods

There are two version of this method. These methods are used by a client of the space to put a
message into the space. If the space supports filters the second version may be used to specify
filtering properties and their values. Other clients can then filter based on these filtering properties.
However, if the space does not support filtering, a QSpaceExcept i on must be thrown with the
message "Filters not Allowed in this space".

The t ake methods

There are four versions of this method. These methods range from the simplest one, which merely
blocks till any message becomes available in the space, to the version that accepts both a time out
value and a filtering string. However, if the space does not support filtering, a @QSpaceExcepti on
must be thrown with the message "Filters not Allowed in this space", if one of the versions that
take a filtering string is called. Also, if the method times out, a QSpaceExcept i on exception with
the message "No message to Take" must be thrown.

The get Nane, i sPersistent,andal | owsFi | t er methods
The get Nane method returns the name of the space instance. The i sPer si st ent and
al | owsFi | t er methods return t r ue if the space is persistent and supports filtering respectively.

The shut down method
This method is called to shutdown the space. The shutdown is clean, which means the registration
with the RMI registry is removed and all IMS related cleanup is performed.

The QSpace Implementation

The QSpace implementation implements the @Space interface described in the previous section.
The space implementation itself is an RMI object. During start-up each space installs itself in the
RMI registry running on its machine at the default port i.e. 1099. The space uses its name, such as
"ModiSpace", as the binding name in the RMI registry. Thus interested applications/processes can
find a space by using the well-known name from the RMI registry.

The mai n method
The mai n method of the implementation does the following, in order:

1. Install a security manager. All RMI applications must have a security manager installed. This is
done as follows:

i f(System get SecurityManager() == null)
Syst em set Securit yManager (new RM SecurityManager());

Get the configuration properties from the specified properties file. The first step is to get the
name of the properties file as follows:

String propertiesFile;
properti esFil e=QSpacelUtils. getPropertiesFile(args))

Spacelt i | s is a class that provides five static methods. These methods can be used by
clients of QSpace instances i.e. spaces and by the space implementation itself as shown
above. The five methods are: get Byt es, get Cbj ect, get Properti esFil e,

get Properti es, and get Par am | will discuss the methods of this class as and when they
are used. | will use all five of these, so all five methods will be discussed. The constructor of
the @Spacellti | s class is private, so instances of this class cannot be created. The

get Properti esFi | e method of this class is shown below:

/1 if one of the args is —-PropertiesFile=XYZ, return XYZ
public static String getPropertiesFile(String[] args) {
int numArgs = args. |l ength;
if(numArgs > 0) {
for(int i=0; I<numArgs; i++) {
i nt index;
/1 Find a command line arg that begins with
[l —PropertiesFile=
i ndex = args[i].indexO("—-PropertiesFile=");
/1 not found, then nove onto the next "arg"

if(index == -1)
conti nue;
i ndex = index + new String("—-PropertiesFile=").length();

String propertiesFilenane = args[i].substring(index).trim);
) return(propertiesFil enane);
}

/1l No properties filename to return
return(null);
}

The next step is to get the properties from this properties file, which is done as follows:
Properties props = Spaceltils. getProperties(propertiesFile,args);

Once again, get Properti es is a static method of the QSpacelt i | s class and is shown
below:

/1l Return a Properties collection that |oads all properties

[l fromthe

/1 given properties file and then overrides any of those

[l properties

/1 with values specified on the command |ine.

/1 For exanple, 1f the properties file contained

/1 col or =bl ue

/1 and the command |ine had a paranter

/1 —col or =red

H theg the returned properties collection would map "color" to
"red"

11

pu

blic static Properties getProperties(
String propertiesFile, String[] args) {

Properties props = new Properties();

try {

Il Read the file into the properties collection
FilelnputStreamin = new Fil el nputStrean(propertiesFile);
props. |l oad(in);

in.close();

catch(java.io.|lOexception e) {
e.printStackTrace();
return(null);
}
/1 No overriding argunents provided, so we're done.
if(args == null
return(props);

/1l Go thru each "arg"
int numArgs = args. |l ength;
ifg numirgs > 0)
or(int i=0; 1<nunArgs; i++) {

i nt index;
Il if the arg does not start with "-" ignore it.
i ndex = args[l] i ndexOF ("-");
if(index == -1)
conti nue;
[l if the arg does not conta|n "=" ignore it.
i ndex = args[i].indexOF("=");
if(index == -1)
conti nue;

String propertyNane;
propertyNanme = args[i].substring(l,index).trinm();

/1 Special case
i f(propertyNane. equal s("PropertiesFile"))
conti nue;

i f(props.containsKey(propertyNane)) {
String pr oIJertyVaI ue;
propertyVal ue = args[i].substring(index+1).trim);
props. put (propertyNane, propertyVal ue);

el se
Systemerr.println("Unknown Property: " + propertyNane);

}

/1 Finally, return the properties collection.
return(props);

}

3. Ifthe "Debug" property’s value is "true", set the _debug static variable to t r ue as follows:

i f(props.getProperty("Debug").trin().equals("true")) {
_debug = true;
System out. println("Debugging is turned on...");

4. Create an instance of the QSpacel npl class passing in the properties collection that we got
in step 2. Let’s look at the QSpacel npl constructor. The constructor first calls the default
base constructor and keeps a reference to the properties for future use. It then checks to if this
instance of the space is persistent as follows:

/1 1s this space persistent?

i f(props.getProperty("Persistent").equal slgnoreCase("false"))
| persi stenceMode = | avax. | ms. Del i ver yMbde. NON_PERSI STENT;

el se

persi stenceMode = javax. | ns. Del i ver yMode. PERSI STENT;

The per si st enceMbde variable will be used in the send method call on the
j avax. j ms. QueueSender object. The constructor also checks to see if this instance of the
space supports filtering as follows:

/1 Does this space allow filters?

r

i f(props.getProperty("Allowrilter"). equal slgnoreCase("false"))
leIIowFiIter = fal se;

el se

bAl | owFi lter = true;

The constructor also gets the queue connection factory by getting the appropriate
(SpaceFact or y class and calling get QueueConnect i onFact ory on it passing in the
properties collection.

/1 Get the queue connection factory...
(SpaceFactory sf = (QSpaceFactory) (d ass. f or Nange(

props. get Property(" QSpaceFactory")).new nstance());
queueConnecti onFactory = sf. get QueueConnecti onFact ory(props);

I've already discussed what happens at this point in great detail in the section "Getting the
Initial Queue Connection Factory" earlier in this chapter.

5. Register the space in the RMI registry as follows:

/1 Make the space available in the RM
/1 registry on [the default] port 1099
Nam ng. bi nd(t heSpace. get Nane(), t heSpace);

The above code snippet shows just how easy RMI is to use. As mentioned earlier, the space is
made available in the local RMI registry available at port 1099. The space is bound in the registry
with the name of the space itself (very convenient).

6. Now wait for the space to shutdown as shown below:

/1 Wait here until the space is asked to shutdown...
synchroni zed(t heSpace) {
whi | e({t heSpace. running()) {
try
t heSpace. wait();

i:atch(Exception e) {

When the space shuts down (i.e. the shutdown nmethod is call ed)
it will call the notify method on itself, which will wake up
the main thread. At that point the running nethod on the space
will return false and so the while loop will no | onger be
execut ed.

7. Unregister the space from the RMI registry and exit as follows:

/1 r{em)ve all traces of the space...
try
Nam ng. unbi nd(t heSpace. get Nane());

—

catch(Exception e)
e.printStackTrace();

}

/1l done
System exit(0);

The QSpace interface implementation
Finally, let's look at the implementation of the QSpace interface, starting with the easiest methods
first.

TheisPersistent,all owsFilter,and get Nane methods
These methods are so easy they need no explanation at all!

public bool ean isPersistent() throws RenbteException{
return(persi stenceMode == javax.jns. Del i veryMode. PERSI STENT) ;

public boolean allowsFilter() throws RenoteException{
return(bAllowFilter);

public String getNane() throws RenoteException{
return(props. get Property("QSpaceNane"));

The shutdown method
Next, let’s look at the shut down method:

synchroni zed public void shutdown() throws RenpteException

/1 if we’'ve already shutdown, just return.
/1 This could happen if two clients asked to shutdown
/] the space at the same tine.
i f (bShut downFl ag)
return;

tr
yfi _debug)
Systemout.println("Shutting dowmn the space " +
getName() + "...");
queueSender. cl ose();
queueRecei ver. cl ose();
queueSessi on. cl ose();
gqueueConnecti on. cl ose();

catch(Exception e)
e.printStackTrace();

}
finally {
/1 Set the shutdown flag to true...
bShut downFl ag = true;
/1 and notify the "main" thread of the shutdown.
notifyAll();

}

This method is synchronized to prevent multiple threads trying to shutdown at the same time. The
method first checks if the space has already been shutdown and if it has, simply returns. This
method closes the queue sender, the receiver, the session, and the connection. It then sets the
shutdown flag, bShut downFl ag , to t r ue and notifies all threads of the shutdown by calling
noti f yAl I . Remember, this will also wake up the main thread, which will then call the r unni ng
method shown below:

/1 if the space has not shutdown then return true.
public bool ean runni ng(g {
r et ur n(! bShut downFl ag) ;

}

Thewr it e methods

Now, let's look at the wr i t e methods. There are two versions of this method. The first version
only takes an array of bytes. The implementation of this method delegates to the second version
as shown below:

write(blob, null);

This second version also takes a properties collection of filtering properties, which in this case will
be nul I . The steps taken by this method are outlined below:

1.

Make sure that the space hasn’t been asked to shutdown. If it has, the method raises an
exception as follows:

i f (bShut downFl ag)
t hr ow new QSpaceExcepti on(
"This space has been shutdown and rnust be restarted.");

If a properties collection of filtering properties is specified, the method checks if filters are
allowed in this space as follows:

if((filters !'=null) & !'bAllowFilter)
t hr ow new QSpaceExcepti on(
"Filters not Allowed in this space");

Obtain the lock associated with this instance of the space as follows:
synchronized(this)

This is very important because we only want one thread accessing the queue at a time.
Then | repeat step 1 again. This is to make sure that the space has not shutdown in the
time it took to acquire the lock and is very important. This step is so important that it has
been identified as a design pattern in itself and is known as the "Double Checked
Locking™® pattern.

Create the message as follows:

/1l Create a BytesMessage i nstance and store the nessage
/1 with its length in this nmessage

Byt esMessage nsg = queueSessi on. creat eByt esMessage();
msg. witelnt(blob.length);

nsg. w it eByt es(bl ob);

Remember from chapter 5, Byt esMessages are useful in situations where one needs to
read in raw data, for example, from a disk file, and transfer it "as is" (without any
conversion at all, such as Big Endian/little Endian, etc.) to another machine and/or
location. In our case, we are receiving raw byte data from the client that we need to store
and allow another (or same) client get access to, possibly from another machine.

Add any filtering properties if required:

/1 Add all the filtering properties to the nessage
if(filters !'= null
java.util.Enuneration enum= filters. keys();
whi | e(enum hasMor eEl ement s()
String nane = (String)enum nextEl enent () ;

® "Double-Checked Locking" by Doug Schmidt and Tim Harrison in Pattern Languages of Program

Design 3

msg.setStringProperty(name,
filters.getProperty(name).trim());

i f(_debug)
System out. println("Added property ["
+ name + "=" + filters.getProperty(name) + "]");

}
}

All filtering properties are added in as "String" properties.

6. Put the message in the queue and notify all threads that a new message is available. The
reason for this will become obvious as we look at the code for the t ake methods. Note
that the per si st enceMbde member variable is used to indicate the persistence status.
The priority of the message is set to 9 (highest) and the message will not timeout. A better
implementation of the space may have a configuration property specified in the properties
file to set a timeout value. This is a minor change and will not be shown here.

gueueSender . send(nsg, persi st enceMde, 9, 0);

/1 1nportant:

/1 Let all threads waiting for "sonething" to "take" know
/1 that their wait may be over...

noti fyAll ();

The t ake methods

Finally, let's look at the t ake methods. There are four versions of these methods. The most
versatile of the four takes two parameters, a time out in milliseconds and a filter string. The other
three simply delegate to this version. For example, the version of t ake that has no parameters
delegates as follows:

take(null, -1);

So, let's look at the most versatile of the four t ake methods. The steps taken by it are described
below:

1. Make sure that the space hasn’t been asked to shutdown. If it has, the method raises an
exception as follows:

i f (bShut downFl ag)

t hr ow new QSpaceExcepti on(
"This space has been shutdown and nust be restarted.");

2. If afilter string is specified, the method checks if filters are allowed in this space as
follows:

if((selection !'=null) && !'bAllowFilter)
t hr ow new QSpaceExcepti on(
"Filters not Allowed in this space");

3. Make sure that the time out value specified is valid as shown below:

if(timeout < -1)
t hr ow new QSpaceException("Invalid Ti neout specified");

This value is a time duration in milliseconds, with —1 being a special value that indicates
an infinite wait.

4. Obtain the lock associated with this instance of the space as follows:

synchronized(this)

This is very important because we only want one thread accessing the queue at a time.
Then | repeat step 1 again. This is to make sure that the space has not shutdown in the
time it took to acquire the lock and is very important. As mentioned earlier this is the
Double Checked Locking pattern.

Based on the duration specified, compute the "end time", which is the current time plus the
duration. Note that this does not take into account the time spent during the processing in
steps 1 through 4. The design of the space is such that acquiring the lock should be a
minimal wait, since no thread holds the lock for any more time than absolutely necessary.
Also, note that this is not a time critical application.

If this space allows filters, we must call the private r econnect method. This method is
shown below:

/1 close queue receiver and recreate. ..
private void reconnect(String selection) throws
SpaceExcepti on

try {
gqueueRecei ver. cl ose();

if(selection.equals(""))
gueueRecei ver =
gueueSessi on. cr eat eRecei ver (queue) ;
el se
gueueRecei ver =
gueueSessi on. cr eat eRecei ver (queue,
sel ection);

}
catch(Exception e) {
e.printStackTrace();
t hr ow new QSpaceExcepti on(
"Exception, could not connect to the space:
+ e. get Message());

}
}

The r econnect method closes the existing queue receiver and recreates it with the
proper selection string if necessary. If the space does not support filters then this
additional step is not necessary, since a filter string will never be specified and so the
gueue receiver will never need to be changed. Note that we have to close the existing
gueue receiver before creating a new one because multiple receivers are not allowed
in the point-to—point model.

JMS Note

Actually, the JIMS does not specify anything on whether the point-to—point
messaging style allows multiple receivers. So individual JMS providers are free to do
whatever they desire. For portability, it is safer to assume that this is not possible.

Try to get a message from the queue by calling the non-blocking receive method on the
gueue as shown below:

Byt esMessage nsg =
(Byt esMessage) queueRecei ver.recei veNoWai t () ;

If a message is found then the method returns it to the caller.

8. If no message was found then the method waits if necessary. This happens either if the
current time [at this instant] is less than [before] the end time calculated in step 5, or if the
time out value specified was —1. Otherwise, the method raises an exception with the
exception message as "No message to Take" as required by the QSpace interface
contract.

9. If step 8 resulted in a wait, then this wait can end either by a time out of the wait or by
another thread calling not i f yAl | . In either case, the sequence from step 6 onwards gets
repeated.

The entire implementation of the space is shown below:

import java.util.Properties;

i mport | ava.util.HashMap;

i mport | ava.rm . Renot eExcepti on;

i mport | ava.rm .RM SecurityManager;

i mport | ava.rm.server. Uni cast Renot e(bj ect ;
i mport | ava.rm . Nani ng;

i mport | avax.jms.*;

public class QSpacel npl extends Uni cast Renot eCbj ect inpl enents QSpace {
public static void nmain(String args[]) {

/1 Install a security nanager
i f(System get SecurityManager() == null)
Syst em set Securit yManager (new RM SecurityManager());

/1l Get the configuration properties
Properties props = getProperties(args);
i f(props == null

Systemexit(-1);

/1 1s debuggi ng on?

i f(props.getProperty("Debug").trim().equals("true")) {
_debug = true;
System out. println("Debugging is turned on...");

/'l Create the space...
Spacel npl theSpace = nul | ;
tr

y
t heSpace = new QSpacel npl (props);
i f(_debug)
System out. println(theSpace.toString());

/1l Make the space available in the RM registry on
/1 [the default] port 1099
Nam ng. bi nd(t heSpace. get Nane(), t heSpace);
i f(_debug)
System out. printl n(
"The space is ready and is available as
+ theSpace.getNanme() + "’ in the RM Registry
on this machine at port 1099");

}

catch(Exception e) {
e.printStackTrace();
Systemexit(-1);

/1 Wait here until the space is asked to shutdown...
synchroni zed(t heSpace) {
whi | e({t heSpace. running()) {
try
t heSpace. wai t ();

%atch(Exception e) {

}
}

/1l remove all traces of the space..

try {
Nam ng. unbi nd(t heSpace. get Name()) ;

catch(Exception e) {
e.printStackTrace();

/'l done
} System exit (0);

public QSpacel npl (Properties props)
‘ t hrows (SpaceExcepti on, RenpteException

/1 important: call base class constructor.
super () ;

/'l keep a reference to props.
this.props = props;

try {

/1 Is this space persistent?

i f(props.getProperty("Persistent").equal sl gnoreCase("fal se"))
Ipersistencel\/bde = Javax.jns. Del i ver yMode. NON_PERSI STENT;

el se
persi stenceMbde = javax.jns. Del i ver yMbde. PERSI STENT

/1 Does this space allow filters?
|f(AFrops getProperty("AlI owFilter"). equal sl gnoreCase("fal se"))
| owFi | ter fal se;
el se
bAl l owFilter = true

/1l Get the queue connection factory..

(SpaceFactory sf = (Q@SpaceFactory) (d ass. f or Nang(
props.getProperty("CBpaceFactory")).nemﬁnstance(g);

gqueueConnect i onFactory = sf. get Connecti onFact ory(props

/1 Now use the queue conn. factory to
/1l get the queue connection,
/1 use the queue connection to get the session, and
/'l use the session to get a sender and receiver
queueConnection =
queueConnecti onFact ory. cr eat eQueueConnecti on();
gueueSessi on = queueConnecti on. creat eQueueSessi on(fal se, 1);
gqueue = queueSessi on. creat eQueue(get Nane());
gqueueSender = queueSessi on. cr eat eSender (queue) ;
gueueRecei ver = queueSessi on. cr eat eRecei ver (queue);
queueConnection.start();

catch(Exception e)
e.printStackTrace();
t hrow new QSpaceExcepti on(
"Exception, could not initialize the space: " +
) e. get Message());
}

/1 Get "displayable" information about the space
public String toString() {

try {

String si;
if(isPersistent())

sl = "persistent”;
el se
sl = "not persistent”
String s2;
i f(aIIomsF|Iter())
s2 = "allows filters
el se
s2 = "does not allow filters"

Str|ngBuffer sb = new Str|ngBuffer(300);

sb. append(" This space is called ") . append(
get Nane()) . append(is");

sb. append(sl). append(" and ').append(sZ);

return(sb.toString());

%atch(Exception e)
}

return "";

/1 This nethod returns "true" as long as the space
/'l hasn’t been asked to shutdown.
public bool ean running() {

ret ur n(! bShut downFl ag) ;

LEEEEEEEEE bbbl
| enentati on of the QSpace Interface
FEETTIDEEE i rrrrrninirrri
c void wite(byte[] blob)
t hrows (QSpaceExcepti on, Renot eException

o =3

/1 del egate. .
write(blob,null);

public void wite(byte[] blob, Properties filters)
t hrows (QSpaceExcepti on, Renot eException

/1l Has the space been asked to shutdown?
i f (bShut downFl ag)
t hrow new QSpaceExcepti on(
"This space has been shutdown and rnust be restarted.");

[l if afilter is specified and this space does not allow
[filt ers then throw an exception.
if((f ilters != null) && |bAIIovvF|Iter)
t hrow new QSpaceException("Filters not Allowed in this space");

/1 only one thread at a time
synchroni zed(this) {

/1 The "Doubl e Checked Pattern" in action
i f (bShut downFl ag)
t hrow new QSpaceExcepti on(
"This space has been shutdown and nust be restarted.");

try {
i f(_debug)
Systenlout.printlnf
"Witing nessage[" + blob.length + " bytes]...");

/'l Create a BytesMessage and put the nessage

Il init.

Byt esMessage nsg = queueSessi on. creat eByt esMessage();
nsg. witelnt(blob.length);

nsg. wi t eByt es(bl ob);

/1 Add all the filtering properties to the nessage
if(filters I'= null
java.util.Enunmeration enum= filters. keys();
whi | e(enum hasMor eEl enent s())
String nane = (String)enum next El emrent () ;
neg. set Stri ngProperty(nang,
filters.getProperty(nane).trim));

i f(_debug)
System out . printl n("Added property [" + name + "="
) filters.getProperty(name) + "1");
}

/1 Send the nmessage to the nessage queue.

/1l Note the use of the persistenceMde

[l property, a priority of 9, and no timeout.
queueSender . send(nsg, persi st enceMde, 9, 0);

/1 1 nportant:

/1 Let all threads waiting for "sonething" to
/1 "take" know

/1 that their wait nay be over..

notifyAll();

}
catch(JMSException e) {
i f(_debug)
Systemerr.println("JMSException in wite()");
t hrow new QSpaceExcepti on(e. get Message());

}
) }
public byte[] take() throws QSpaceException, RenpteException
/1 del egate
return(take(null,-1));

public byte[] take(long timeout)
t hrows QSpaceExcepti on, Renot eException

/1 del egate
return(take(null,tineout));

public byte[] take(String sel ection)
t hrows QSpaceExcepti on, Renot eException

/1 del egate
return(take(sel ection, -1));

public byte[] take(String selection, |ong tineout)
t hrows QSpaceExcepti on, Renot eException

/1 Has the space been asked to shutdown?
i f (bShut downFl ag)
t hrow new QSpaceExcepti on(
"Thi s space has been shutdown and rnust be restarted.");

f afilter is specified and this space does not all ow
i

[
[filt ers then throw an exception.

if((selection!=null) &% 'bAllowFilter)
t hrow new QSpaceExcepti on(
"Filters not Allowed in this space");

/ must have a valid tineout
f(timeout < -1)
t hrow new QSpaceExcepti on(
"I'nvalid Tinmeout specified");

/
i

if(_debug && (selection != null) .
Systemout.println("Selection criteria: " +
sel ection);

/1 only one thread at a tine..
synchroni zed(this) {

/1 The "Doubl e Checked Pattern" in action
i f (bShut downFl ag)
t hrow new QSpaceException("This space has been
shut down and nmust be restarted.");

tr

{if a tineout has been specified then

compute the end tine.

g endtime = O;

timeout = -1)

ndtine = SystemcurrentTineMIlis() +
ti meout;

y
/1
/1
| on
if(
e

while(true) {

[l if this space allows filters
/1 we need to call the reconnect
/1 method. This nethod recreates
/1 the receiver with the "right"
/1l nmessage sel ector.
if(bAllowFilter) {
if(selection !'= nul
reconnect (sel ection);
el se
reconnect ("");

/1 Any nessages avail abl e?
Byt esMessage nsg = (BytesMessage)
gqueueRecei ver.recei veNoWai t () ;

/1 Yep!, return the nmessage.

if(nmeg !'= nul
int len = nsg.readlnt(
byte[] theBytes = new byte[len];
| en = nsg.readBytes(theBytes);

i f(_debug)
Systemout. println("Took nessage [" + len + " bytes]..."
if(selection !'= null)
java.util.Enunmeration e = nsg. get PropertyNames()
whi | e(e. hasMoreEl enents())
String name = (String)e.nextEl enent();
i f(!nanme.startsWth("JM"))
Systemout.println(name + "=" +
nsg. get St ri ngProperty(nane));

——

/'l return the bytes taken?
return(theBytes);

/1 Nope, no nmessage avail abl e!

I/l Check to see if we tinmed out
{4 If so, then return.
i

(tineout '= -1 &&
SystemcurrentTimeMI1lis() > endtine) {
i f(_debug)

Systemout.println("No nmessage to Take");
t hrow new QSpaceException("No nessage to Take");

}
/1 | nportant:
/1 "wait" will release the lock and all ow
/1 other threads in.
/1 This is key to the proper operation of
/'l the space
try {
1 f(timeout == -1)
vai t () ;
/1 Normally will not happen..
else if(timeout == 0)
wait(1);
el se

) wai t (Mat h. abs(endtine - SystemcurrentTineMIlis()));
catch(InterruptedException e) {

}

/1 This thread just woke up.

/] In the mean time, the space
/] could have been shut down?

i f (bShut downFl ag)

t hrow new QSpaceExcepti on("This space
has been shutdown and nmust be restarted.");

} // while(true) | oop continues?

catch(JMSException e) {
i f(_debug)
Systemerr.println("JMSException in take()");
e.printStackTrace();
) t hrow new QSpaceExcepti on(e. get Message());
}
}

synchroni zed public void shutdown() throws RenpteException

[l If we've already shutdown, just return.
i f (bShut downFl ag)
return;

tr
yfé _debug)
Systemout.println("Shutting dowmn the space " +
getName() + "...");
queueSender. cl ose();
queueRecei ver. cl ose();
queueSessi on. cl ose();
queueConnecti on. cl ose();

}
catch(Exception e)
e.printStackTrace();

finally {
/1l Set the shutdown flag to true..

bShut downFl ag = true;

/1 Notify all waiting threads that the space
/1 has shut down. This will also wake up the nmain
/1l thread, which will then exit the JVM
) noti fyAll ();
}

public bool ean isPersistent() throws RenbteException{
return(persi stenceMode == javax.jns. Del i ver yMode. PERSI STENT) ;

public boolean allowsFilter() throws RenoteException{
return(bAl lowFilter);

public String getNane() throws RenoteException{
return(props. get Property("QSpaceNane"));

[/l Private Methods...

/1l Get the configuration properties
private static Properties getProperties(String[] args) {
String propertiesFile = null;
i f((propertiesFile=QSpaceltils.getPropertiesFile(args)) == null){
Systemerr. println(
"Fatal Error: You must specify a properties file");
return(null);

Systemout.println("Using Properties File + propertiesFile);
Properties props = (Spaceltils.getProperties(propertiesFile,args);
i f(props == null
Systemerr. println(
"Fatal Error: Could not get the QSpacel npl Properties," +
" Shutting down...");

return(props);

}

/1l close all queue related stuff and recreate... _
private void reconnect(String selection) throws QSpaceException

try {
queueRecei ver. cl ose();

if(selection.equals("")) _
queueRecei ver = queueSessi on. cr eat eRecei ver (queue) ;
el se
gueueRecei ver = queueSessi on. cr eat eRecei ver (queue, sel ection);

}

catch(Exception e) {
e.printStackTrace();
t hrow new QSpaceExcepti on(

"Exception, could not connect to the space: " +
e. get Message());
) }
/'l Private Menber Variables
private static bool ean _debug = fal se;
private QueueConnecti onFactory gqueueConnect i onFact ory;

private QueueConnecti on queueConnecti on;

private QueueSessi on gqueueSessi on;

private QueueSender gqueueSender ;
private QueueReceiver queueRecei ver;
private Queue queue;

private Pr oIJerti es props;

private bool ean bAl |l owFilter;

private int persistenceMde;

private bool ean bShutdownFlag = fal se;

}

If | haven’'t made it obvious yet, let me do so right now. At any point in time, only one thread is
using the queue session, queue sender, and queue receiver objects. It may seem that this is not
true since multiple threads can take from and write to the space simultaneoulsy. But remember,
the wr i t e and t ake methods are synchronized. Also, the t ake methods always call the

reci ei veNoWai t method on the queue receiver. If a message is retrieved, the method returns
the message to the caller. On the other hand if no message is retrieved, the method calls the wai t
method to release its lock so that another thread can take its turn. The wr i t e method always
finishes sending the message to the queue and returns. This logic is extremely important since the
gqueue session, sender, and receiver objects are all single-threaded. In all your work with IMS you
must make sure that you never violate this principle since it may lead to extremely hard to track
down bugs.

Compiling the QSpace Application
Compiling the space requires the following:
e Setting up the right classpath
e Compiling the right QSpaceFactory class
e Generating the stubs and skeletons

For example, let's consider compiling with Progress Software’s SonicMQ messaging product (on a
Windows platform):

1. Setthe home directory for SonicMQ
set IMQ_HOME=E:\Program Files\Progress_SonicMQ
2. Set the classpath

set IMQ_CPATH=%JMQ_CPATH%;%JMQ_HOME%\lib\jms.jar;
%JIMQ_HOME%\lib\broker.jar;%JMQ_HOME%\lib\jndi.jar

3. Set the files to compile
set TARGET= QSpaceException.java QSpaceFactory.java QSpace.java
QSpaceUtils.java QSpacelmpl.java TestObject.java QSpaceClient.java
set TARGET= %TARGET% SonicQSpaceFactorylmpl.java
4. Compile the target files using the classpath IMQ_CPATH
javac —d . —g —classpath "%JMQ_CPATH%" %TARGET%

5. Create and compile the RMI stubs and skeletons using the RMI compiler

rmic —d . QSpacelmpl

Starting a QSpace

Starting a space requires the following:

e Setting up the right classpath

e Passing the right system properties to the JVM

e Specifying a properties file for the space

e Setting up a codebase

e Creating a policy file

e Starting an RMI registry at port 1099. This is done by just running the rmiregistry program
that comes with the JRE. Make sure the classpath is set to nothing for that session.

My codebase is set up on "localhost" i.e. this machine, at port 9050. The following files will be
needed in the codebase

* QSpace.class

* QSpaceException.class

* QSpacelmpl_Stub.class

I am also using a wide—open policy file (called policy.all) as shown below. This policy file should
not be used in a production system. A policy file needs to be specified any time an application
uses a security manager as in the case of RMI.

grant { _ _ o
perm ssion java.security. All Permission "", "";

Let's go through an example of starting the space with Fiorano’s FioranoMQ messaging product
(on a Windows platform):

1. Make sure Fiorano’s FioranoMQ is running and the appropriate queue connection factory is
set up along with a queue whose name corresponds to the QSpaceName property in the
properties file. Refer to Fiorano’s documentation for how to do these.

2. Start the RMI registry at port 1099 and a web server at port 9050.

3. Set the flags that will be passed to the Java VM

set FLAGS= -Djava.compiler=NONE -Djava.security.policy=policy.all
-Djava.rmi.server.codebase=http://localhost:9050/

4. Setthe home directory for SonicMQ
set IMQ_HOME=E:\Program Files\Fiorano\FioranoMQ
5. Set the classpath

set CPATH=.
set CPATH=%CPATH%;%JMQ_HOME%\lib\rt.jar;%IMQ_HOME%\lib\fmprtl.zip

6. Start the space

java —cp "%CPATH%" %FLAGS% QSpacelmpl "-PropertiesFile=gspace.properties”

The combined results of executing these five steps are shown in figure 2.
C:AWINNTASystem32hcmd.exe - java -cp ™. ;E:\Program Files\Fiorano‘FioranoMQ\libArt jarE-APr_. [l[=] E3

E:~My Documentszs“Personal~Articles and Papers~JMS Booksgspace>*java —cp “.;E:“\Pmm
rogram Files“Fiorano“FioranoM@-libwrt.jar;E:“Program Files“Fiorano“FioranoMQ-
libvfmprtl.zip" -Djava.compiler=HONE -Djava.security.policy=policy.all -Djav
a.rmi_zerver.codebaze=http:-- localhost:-7058 QSpacelmpl '"-PropertiesFile=qg=
pace.properties"

Uzing Propertiez File gspace.properties

Debugging is turned on...

Thiz =pace is called ModiSpace. iz not persistent, and allows filters
The space is ready and iz available as ‘ModiSpace’ in the BMI Registry on thi
= machine at port 1899

Figure 3: Starting the QSpace using Fiorano’s FioranoMQ

A Test Program
Let's look at a client of our space that can exercise every feature.

Note:
Make sure that QSpace.class, QSpaceUtils.class, and QSpaceException.class are in the
classpath before running the test program.

The usage for the client application is summarized as follows:

java —Djava.security.policy=policy.all QSpaceC i ent space—name write
[message:<message>] [filter:<properties>]

java —Djava.security.policy=policy.all QSpaceCl i ent space—name take
[timeout:<timeout>] [filter:<string>]

java —Djava.security.policy=policy.all QSpaceCl i ent space—name shutdown

When the action is "write", the filter parameter must be the name of a properties file that specifies
the filtering properties and their values. For example, the file may look like:

filenane: filter.properties
year =1999

manuf act er er =honda

col or=red

make=ci vi ¢

nodel =ex

When the action is "take", the filter paramter is a string that conforms to the message selector
syntax discussed in chapter 5, for example, "year="1999’ And model="ex™".

The program in its entirety is shown below. While compiling this program make sure that
QSpace.class is in the classpath.

[l A conprehensive test programto test the QSpace inplenentation
import java.util.Properties;

i mport | ava.rmn . Nani ng;

i mport | ava.rm .RM SecurityManager;

i mport | ava.io.FilelnputStream

public class Q@Spacedient {

publ
/1
if

11
if

ic static void main(String args[]) {

Install a security nmanager
(System get SecurityManager() == null

)
Syst em set Securi t yManager (new RM SecurityManager());

Show usage i f necessary
(args.length < 2)
System out . printl n("\ nUsage: ") ;

Systemout.println("client space-nane wite .
nessage: <message>] [filter:<properties>]");

Systemout.println("\t\tor");
Systemout.println
Systemout. prin
Systemout. prin
System exit(0);

Etlmeout <tineout>] [f
(\t\tor");

}

String spaceNanme = args[O0];
String action = args[1];

/] Default val ues

int timeout = -1,

String nessage = "Hello";
String filterString = null;

Pr
/1
if

@

el

operties filterProps = null;

Set up for "putting" into the space

(action.equal s("wite")) {

/1l Has a nmessage been sIJecifi ed?

String tenp = QSpacelti

if(temp !'= null)
nessage = tenp;

"client space-nanme take

s. get Par an{ ar gs,

Iter:<string>]");

"client space-nanme shutdown");

"message") ;

/1 Has a properties file containing filter properties
/'l been specified?
temp = (ﬁpaceUtlls et Paran(args,"filter");
if(temp !'= null ?
fi It?rProps = new Properties();
try
) filterProps.|load(new Fil el nputStrean(tenp));
catch(Exception e) {
e.printStackTrace();
Systemexit(-1);
}
se if(action.equal s("take")) {

/1 Has a tineout val ue been specified?
tring tenp = QSpacelUtil s. get Paran{ args
temp !'= null) {

ry {

ti meout = Integer.parselnt(tenp);

%:atch(Exception e) {

a filter string been specified?

tenp !'= null
ilterString = tenp;

se if(action.equal s("shutdown")) {

,"timeout");

/ s
]?rrp = QSpaceUtiIs.getPararT(args,"fiIter");
e

}
}

el se {
Systemerr.printin("Error: Invalid action.
Action nust be "wite' or 'take' .");
Systemexit(-1);

(ﬁpage space = null;
try
space = (@Space) Nani ng. | ookup(spaceNane) ;

catch(Exception e) {
e.printStackTrace();
Systemexit(-1);

i f(action.equals("wite")) {
ty O
1 f(filterProps != null
space. wite(nessage. getBytes(),filterProps);
/I space.wite(Q@Spaceltils. getBytes(
/I new Test Cbject("This is the Test Object nessage...")),
[1filterProps);
el se
space. wite(nessage. get Bytes());
/I space.wite(Q@Spaceltils. getBytes(
/I new Test Cbject("This is the Test Object nessage...")));

}
catch(Exception e) {
Systemerr.println(e.get Message());

el se i}(action.equal s("take")) {
try
if(filterString !'= null)
System out. printl n(
new String(space.takegfiIterString, timeout)));
/1 Systemout.println(((TestObject)
//@PaceUti | s. get Obj ect (space. t ake(
I [IfilterString,timeout))). get Message());
el se
System out. println(new String(space.take(tineout)));
/1 Systemout.println(((TestObject)
/1 QSpacelUtil s. get Obj ect (space.take(tineout))).get Message());

catch(Exception e) {
Systemerr.println(e.get Message());

}
el se if(action.equal s("shutdown")) {

try {
space. shut down() ;

catch(Exception e)
e.printStackTrace();

}
}
/1 done
System exit (0);

The client program takes two mandatory parameters, which must be the first two and in a fixed
order. The first parameter is the name of the space to use. The second parameter is the action to
perform, which can be either "write", "take", or "shutdown". Based on this action, additional
parameters can be specified in the form parameter:value.

To read these parameter values, the client program uses the get Par amstatic method from the
SpaceUti | s class. This method is shown below:

/1l Get the value of the "parant fromthe array "args"
[l For exanple, if one of the Strings in args was
[/ name: " Tarak Modi"
/1 and "parant was "name" then
/1 this nmethod would return "Tarak Mdi"
public static String getParan(String[] args, String param {
int numArgs = args. |l ength;
if(numArgs > 0) {
String cl Param = param + ":";
for(Int i=0; i<numArgs; i++) {
int index;
/1 Find a command line arg that begins with
/'l whatever clParamis...
i ndex = args[i].i)ndexo‘(cl Par am ;

if(index == -1

conti nue;
i ndex = index + clParam | ength();
return(args[i].substring(index).trim));

}

return(null);

Once the paramter values are read, the client tries to connect to the space indicated by the
space—name paramter. This is done as follows:

/1 The first parameter is the space name
String spaceNane = args[O0];

Space space = null;

try {
space = (Q@Space) Nani ng. | ookup(spaceNane) ;

catch(Exception e) { // Remmining code not shown?

For example, if spaceNare is "ModiSpace", then the static | ookup method on the
j ava. rm . Nam ng class will lookup the "ModiSpace" parameter value in the RMI registry on port
1099 on the local machine and return the remote object corresponding to it from the registry.

Now let’'s walk through the three different usages of the client program:

Usage 1
Putting a message in the space

java —Djava.security.policy=policy.all @SpaceC i ent space—name write [message:<message>]
[filter:<properties>]

For example,

« java —Djava.security.policy=policy.all QspaceClient ModiSpace write

» java —Djava.security.policy=policy.all QspaceClient ModiSpace write message:"This is a
test message?"

» java —Djava.security.policy=policy.all QspaceClient ModiSpace write filter:filter.properties

» java —Djava.security.policy=policy.all QspaceClient ModiSpace write message:"This is a
test message?" filter:filter.properties

The order of the filter and message parameters does not matter. Any combination of these two
parameters may be specified. If a filter parameter is specified it is loaded into a properties
collection as follows:

tenp = SpacelUtil s. getParan(args,"filter");
filterProps = new Properties();

try {

filterProps.|oad(new Fil el nputStrean(tenp));

}
catch(// Remaini ng code not shown?

If a message parameter is specified that message will be used instead of the default "Hello"
message.

Finally, the program will put the message in the space as follows:

if(filterProps !'= null)
| space. wite(nessage. getBytes(),filterProps);
el se

space. wite(nessage. get Bytes());

If a filter was specified then the two parameter version of wr i t e is used. Also note the use of the
get Byt es method on the message string. This is because the space only accepts an array of
bytes.

Usage 2
Taking a message out from the space

java —Djava.security.policy=policy.all @SpaceCl i ent space—name take [timeout:<timeout>]
[filter:<string>]

For example,

» java —Djava.security.policy=policy.all QspaceClient ModiSpace take

» java —Djava.security.policy=policy.all QspaceClient ModiSpace take timeout:5000

» java —Djava.security.policy=policy.all QspaceClient ModiSpace take filter:"make="civic’
AND (model="ex’ OR year='1999")"

« java —Djava.security.policy=policy.all QspaceClient ModiSpace take timeout:5000
filter:"make='"civic’ AND (model="ex’ OR year="1999")"

The order of the filter and timeout parameters does not matter. Any combination of these two
parameters may be specified. If a filter parameter is specified it is must be a string that conforms to
the message selector syntax discussed in chapter 5. The timeout parameter determines how long
the t ake method on the space will wait for a message. It is specified in milliseconds. The default
timeout value set in this program is —1, which is a special value that causes the t ake method to
block until a message arrives or the space shuts down.

Once the parameters are obtained tha client program will invoke the t ake method on the space
as follows:

if(filterString !'= null
ISystem out.println(new String(space.take(filterString,tinmeout)));
el se

Systemout. println(new String(space.take(tineout)));
If a filter was specified then the two parameter version of t ake is used.

Usage 3: java QSpaced i ent space—name shutdown

For example,
java QSpaceClient ModiSpace shutdown

This will instruct the client program to shutdown the space "ModiSpace". It does this be calling the
shutdown method on the space as follows:

try {
space. shut down() ;

}
catch(Exception e)
e.printStackTrace();

Client Miscellania
The client has four "interesting” lines commented out. One of these lines is

/Ispace.wite(Q@Spaceltils. getBytes(new Test Obj ect (
[1"This is the Test (bject nessage...")));

Test Obj ect is a simple, serializable class as shown below:

/1l A test object to test putting any
/1 Serialable object in a gspace
public class Test(bject inplements java.io. Serializable {
private String _message;
ublic TestObject() {

public TestObject(String s) {
_nessage = s;

}
public String get Message() {
return(_message);

}

As | mentioned before, our space implementation can contain any bytestream, including a
serialized Java object. Once again, the class QSpacelUt i | s comes to our rescue with a pair of
helpers: get Byt es and get Obj ect . The get Byt es static method takes a reference to a
Serializable object and returns an array of bytes. This method is shown below:

/[l Get the serialized bytestreamfor the
/1 given Serializable object
public static byte[] getBytes(java.io.Serializable object) {
j ava.i o. Byt eArrayQut put Stream bos =
‘ new j ava.i o. Byt eArrayQut put Strean() ;
tr
}/ava. i 0. Obj ect Qut put Stream oos =
new j ava.i o. Obj ect Qut put St r eam(bos) ;
00s. wri t eObj ect (obj ectg;
return(bos.toByteArray());

}
catch(Exception e) {

e.printStackTrace();
return(null);

}
Another interesting "commented out" line is:

../1ISystemout.println(((TestObject)QSpaceltils. gethject(

/I space. take(tineout))).get Message());

The get Obj ect static method takes an array of bytes and returns a reference to a
Seri al i zabl e object. In this case, | typecast it to a Test Obj ect and call get Message on it.
The get Obj ect method is shown below:

/1l Get the object corresponding to a serialized bytestream
public static java.io.Serializable getObject(byte[] bytes) {
java.io.ByteArrayl nput Stream bis =
‘ new j ava.i o. Byt eArrayl nput Strean(byt es);
tr
}/ava. io.bjectlnputStreamois =
new j ava.i o. Obj ect | nput St rean(bi s);
return(java.io. Serializable)ois.readObject();

catch(Exception e) {
e.printStackTrace();
return(null);

}
}
| suggest that you uncomment the four lines of code that are currently commented out and

comment out the other corresponding four lines of code i.e. the line of code just above each line of
code currently commented out. Now compile and run the client again and observe the outputs.

Using QSpace to Solve Problems

Before wrapping up this chapter, let’'s take a look a client/server application that uses QSpace as
its communication backbone. The client program creates 10 computation tasks and puts each one
in the space named "ModiSpace". A computation task message consists of an instance of the
Conput eTask class and a filtering property "type" set equal to "Task". The Conput eTask class
is defined as follows:

public class ConputeTask inplenments java.io. Serializable {

/1l the id of the operation
public int id;

/1 what operation.
/1 Valid values are "ADD', " SUBTRACT", and "MJLTI PLY".
public String operation;

/1 The operands.
publ i c doubl e val ueil;
public doubl e val ue2;

E)Ubl i ¢ Comput eTask() {
}

Note that the class is serializable, since we will need to put an instance of it in the space. The
client then waits for each task to be completed. The client does not care about the order in which
the computation tasks are completed or which server completes them. The client program is as
follows:

import java.util.Properties;
i mport Java.rn.Nam ng;
i mport java.rni.RM SecurityManager;

public class Cient
public static void main(String args[]) {
/1 Install a security nmanager.
i f(System get SecurityManager() == null)

System set Securi t yManager (new RM SecurityManager());

/1 Find "Modi Space"
@Space space = nul |;

try {
space = (Q@Space) Nam ng. | ookup("Modi Space");

catch(Exception e) {
e.printStackTrace();
Systemexit(-1);

}
/1 Create the conpute tasks.
/1l Tasks 0, 5, and 9 are "ADD' tasks
/1 Tasks 1, 3, and 8 are "SUBTRACT" tasks
/1 Tasks 2, 4, 6, and 7 are "MJLTIPLY" tasks
Systemout.println("Tasks...");
try {
for(int i=0; i<10; i++) {
Conput eTask task = new Conput eTask();
task.id = i;
if i == i == | | i ==9)
t ask. operation = "ADD";
else if(i==1|] i==3 || i==
t ask. operati on = "SUBTRACT";

el se

t ask. operation = "MJLTI PLY";
t ask. val uel = Mat h. round(Mat h. randon{() *10);
t ask. val ue2 = Mat h. round(Mat h. randon{) *10) ;

/1 Show t he task
Systemout.println("Task #" + i + " [" +
task.operation + "," + task.valuel + "," + task.value2 + "]");

/1 Put the task in the space

/1l Mark it as a task using a filter property "type"
Properties f = new Properties();

f.put("type", " Task");

} space. wite(Q@Spaceltils. getBytes(task),f);

/1 Get the results
/I Results are marked by setting the filter

/I property "type" to "Result"

Systemout.println("\nResults...");

int i=0;

while(1<10)

Conput eResult result = (Comput eResul t) QSpaceUtil s. get Obj ect (

. space. take("type="Result’", -1));
i+
/] Show the result
Systemout.println("Task #" + result.id +

" [" + result.value + "]");

}

catch(Exception e) {
e.printStackTrace();

/1 Done
System exit (0);

The server program finds "ModiSpace" and waits for computation tasks from any client. When any
such tasks are found, the server carries out the requested computation and puts a computation
result message back in the space. The computation result message consists of an instance of the
Conput eResul t class and a filtering property "type" set equal to "Result". The Conmput eResul t
class is as follows:

public class ConputeResult inplements java.io.Serializable {

/1 The id of the request task.
public int id;

/1 The result
publ i c doubl e val ue;

}E)ubl ic ComputeResult() {
}

Note that the class is serializable, since we will need to put an instance of it in the space. The
server program is as follows:

import java.util.Properties;
i mport java.rn.Nam ng;
i mport java.rm .RM SecurityManager;

public class Server {
public static void main(String args[]) {

/1 Install a security manager
if(System get SecurityManager() == null)
Syst em set Securi t yManager (new RM SecurityManager());

/1 Find "Modi Space"
Space space = nul | ;

try {
space = (Q@Space) Nam ng. | ookup(" Modi Space");

catch(Exception e) {
e.printStackTrace();
Systemexit(-1);

Systemout.println("Server is ready to accept " +
" Conput eTasks...");

/1 Loop forever, waiting for conpute tasks.
while(true) {
try {
/1 "Take" a task fromthe space.
/1 Note the use of the selection string "type= Task'"
/1 Use get Cbject nmethod on QSpaceltils
/1 to get the task object fromthe bytes
Conput eTask task = (Conput eTask) QSpacelUtil s. get Qbj ect (
space. t ake("type=' Task’'", -1));

I/ Show the task that we got fromthe space
Systemout.println("Got Task #" + task.id

+ " [" + task.operation + ", " +
task.valuel + "," + task.value2 + "]");

/ Compute the results

/ And put the result back in Mdi Space".
/ Mark the result by setting the filter
/| property "type" to "Result"

]9 bl e value = 0;

/
/
/
/
dou

i f(task.operation.equal s("ADD"')) {

}
}

}

val ue = task.valuel + task.val ue2;

}
el se if(task.operation. equal s("SUBTRACT")) {
val ue = task.valuel - task.val uez;

}
el se if(task.operation.equal s("MJLTIPLY")) {
val ue = task.val uel * task. val ue2;

}

/1 Put the result back in the space
/1 Note that we add a filter property
/1 Also note the use of the getBytes
/1 method on QSpacelUtils to put the
/1 Serializable result object in the
/'l space.

Conput eResult result = new ConputeResult();
result.id = task.id;
resul t.val ue = val ue;
Properties f = new Properties();
f.put("type","Result");
space. wite(Q@Spaceltils.getBytes(result),f);

icatch(Exception e) {

Running the Client/Server Application
The steps required to run the client/server application are as follows:

1.
2.
3

Compile the client and server programs. Make sure that QSpace.class is in the classpath.
Start a space named "ModiSpace" that supports filtering (as done earlier).

Start a server application as shown below. Make sure that QSpace.class and
QSpaceException.class are in the classpath.

java -Dj ava. conpi | er =NONE -Dj ava. security. policy=policy.all
—-cp E:\dev\test\gspace\;. Server

This is shown in figure 3.
Start client application as shown below. Make sure that QSpace.class is in the classpath.

java -Dj ava. conpi | er =NONE -Dj ava. securi t§/. pol i cy=policy. all
—cp E:\dev\itest\qgspace\;. dient

This is shown in figure 4.

Try running several instances of the server application at the same time. Notice a
difference in how fast the client completes? The client has no idea of how many servers
are in existence or even where they are. This is an example of a scalable, loosely
coupled, and (to some extent) fault tolerant distributed system.

Figures 3 - 5 illustrate the results of the steps 2 - 4.

ﬁE:\WINNT'\System:ﬂ\cmd_exe - java -Djava.compiler=NOMNE -Djava.security.policy=policy._all -cp.._ [l[=] E3

-
o P D H P 00 [)
1 i [1 1
1 0
1 15 ".II H.7.H
1 ! a:" H.H.4.H
H p A 4 [
1 M 4 4
1 ! SUBTRA G f
1 ! P H.H o
1 ! ADD H.8.H
1 117 M P G G
. H p A ?
M .8 .0
1 11 SUBTRA 5. H H
1 Y ADD f 0
-

Figure 4: The Server window after a Client has executed

Y& Select C-AWINNT\Spstem32\cmd_exe

.

o P 0 H P Hili [)
0 i [} 0 0
140 ADD [, 9 _H
! SUBTRA 6.8 A
i M H g H
| SUBTRA [A
! [H.8 1
! ADD .8 . H
G M [[A
i p A ” A

M 1.9 . 0
3 SUBTRA B.H H
19 ADD [5

"

10 5
! [
! B.8
i [
! .8
! i
G [
! (.8
3 6. H
I [
(o F 1 f F Boo -

Figure 5: The Client Application window after it has finished execution

AWINNTASpstem32hcmd.exe - java -cp ".:E:\Program Files\Fiorano\FioranoMQ\lib\it jar;E-APr._. [H[=] E3

E:~My Documents“Personal“Articles and Papers“JMS Book“gspacerjava —cp ".;E:“P
rogram Files“Fiorano*FioranoMQ~lib»rt.jar:E:“Program Filez“Fiorano~FioranoMg>
libsfmprtl.zip” -Djava.compiler=NONE -Djava.security.policy=policy.all -Djav
a.rmi.server.codebase=http:-~localhost:?858/ QSpacelmpl "-PropertiesFile=gs
pace.properties'’

Using Properties File gspace.properties

Debugging is turned on...

Thiz zpace iz called ModiSpace, iz not persistent. and allows filters

The szpace iz ready and is available as *‘ModiSpace’ in the RBMI Registry on thi
5 machine at port 1829

Selection criteria: type="Taszk'

Writing messagelll4d bhytesl...

Added property [type=Task]

Writing mezsagel[11? hytesl._.

Added property [type=Taskl

Took message [114 bytez]l...

tupe=Tazk

Writing messagel11? hytesl...

Added property [type=Task]

Writing mezsagel[11? hytesl._.

Added property [type=Task]

Writing message[11? bytesl...

Added property [type=Taskl

Writing messagell1ld hytesl...

Added property [type=Task]

Writing mezzagel[11? hytesl.._.

Added property [type=Task]l

Writing message 5% butes]l...

Added property [type=Rezult]

Writing messagel[11? hytesl...

Added property [type=Task]

Selection criteria: type="Task'

Writing messagel11? hytesl...

Added property [type=Task]l

Took mezszage [119 hytez1...

Added property [type=Taszkl
Selection criteria: type="Result’
Writing message 59 butes]l...
Added property [type=Rezult]
Selection criteria: type="Task'
Took message [59 hytesl...
type=Rezult

Selection criteria: type="Result’
Took message [119 bytez]l...
type=Tazk

Took message [59 hytesl...
type=Result

Writing message 5% hutes1_..
Added property [type=Result]
Selection criteria: type='Result’
Selection criteria: type='Task’
Took message [59 hytesl...
type=Result

Selection criteria: type='Result’
Took mezszage [119 bytesl... ot

Figure 6: (Partial Output) The QSpace window after the Client has executed.

Perusing through the output of figure 5 shows that the Server is processing Task 1 while the Client
is adding other Tasks. By the time the Client puts in the seventh Task, The Server puts in the
Results of the first Task and gets the next one.

Summary

Distributed applications can be notoriously difficult to design, build, and debug. The distributed
environment introduces many complexities, which are not present while writing standalone
applications. Some of these challenges include network latency, synchronization and concurrency,
and partial failure. In this chapter, I've discussed space—based programming, which although not a
"silver bullet", is an excellent concept that leads towards an elegant solution to these problems.

Space-based programming takes us one step further towards achieving our goals in a distributed
system, namely those of scalability, high availability, loose coupling, and performance. It also
helps us in facing the challenges mentioned above. Best of all, as I've shown in this chapter, you
do not have to buy an expensive implementation to get started with this excellent concept. It's
fairly easy to create a homegrown implementation using a JMS compliant messaging product that
satisfies your requirements, and it's fun too. Let’s wrap this chapter up by considering the benefits
that JMS gives us in the space implementation discussed here. In my opinion, the most important
benefit is providing the ability to easily switch between JMS providers (I showed you support for
three such JMS providers). More importantly, we did not handicap ourselves by "sticking to" the
JMS specification.

Chapter 9

Creating a JMS Protocol Handler

Throughout this book, I've presented JMS as being an excellent foundation for enterprise
applications upon. But it is not very appealing to force every developer in your organization to
learn JMS?°. One of the most common ways to avoid that is to create a reusable library that
encapsulates all the JMS related code/knowledge. Unfortunately, even this library would require a
learning curve, albeit a smaller one (hopefully). In design pattern lingo this library is referred to as
a facade®. One possible definition of a facade is as follows:

"A higher—level interface that provides a unified way of accessing a subsytem and as a
result makes the subsystem easier to use."

Thus, in constrast to most design patterns that help break the system up into subsystems, the
facade design pattern rolls up a complex subsystem into one, easy-to-use system. A facade can
provide a simple default view of the subsystem that is good enough for most clients. Only clients
needing more customizability will need to look beyond the facade.

In this chapter, | will present an alternative facade based on the Java protocol handler architecture.
The major advantage of this approach is that most Java developers are all already familiar with
using this architecture via the URL class in the j ava. net package. For example:

URL url = new URL("http://ww.javasoft.comindex.htm");

An additional and by no means minor benefit is that this is a time—tested architecture built into the
Java language/platform itself. Best of all, this architecture is flexible enough to allow the "plug-in"
of new protocol [handlers]. That is exactly what | will show you how to do in this chapter by
creating a protocol handler for JMS.

For example, using the JMS protocol handler that we will create in this chapter, programming with
JMS can be as simple as:

/1 create a new URL with our custom"jns" protocol.
URL url = new URL("jms:// Queue/ Modi Queue");
URLConnection uc = url.openConnection();

/1 Send a message
Dat aCut put St ream dos =
new Dat aQut put St reamuc. get Qut put Stream()) ;
dos.writeUTF("Hellol");
dos. flush();

/1l Receive the nessage
Dat al nput Stream di s = new Dat al nput St ream(uc. get | nput Strean());
String nessage = dis.readUTF();

/'l close the streans.
dos. cl ose();

2 Actually, developers would probably love the idea of learning a new API, but managers would be worried
about the cost and time involved.

2 For more details on this very useful design pattern refer to "Elements of Reusable Object—Oriented
Software" by Eric Gamma, et al.

di s.close();

An Overview of the Protocol Handler Architecture

The gateway to this architecture is the j ava. net . URL class, which encapsulates a URL string.
The general form of a URL is

protocol ://host:port/fil epat h#ref

Examples include "http://www.javasoft.com/index.html" or "file:///C:/temp/junk.txt"?2. In the first
example, the protocol is http, the host name is www.javasoft.com, and the filepath is index.html.
Since no port number has been specified, the protocol handler will use a protocol specific/default
port, which in this case will be port number 80. In the second example, the protocol is file and the
filepath is C:/temp/junk.txt. Note that in this case neither the host name nor the port number have
been specified (which would have been between the first and second slashes), so the file protocol
handler will use protocol specific/default values for these, such as "localhost" for the host name.

As an aside, the format of the URL string for the jms protocol will be as follows.

j ms:// Queue/ <QueueNane>

or
j ms:// Topi ¢/ <Topi cNane>

Note that the jms protocol does not have a concept of a host name, port number, or filepath.
Instead the host name is actually the messaging style and the filepath is the destination.

The URL class itself does not know how to access the resource stream represented by the URL
string. Instead, the URL class relies on a set of other classes to handle this. When a new URL
class instance is created it resolves? the URL string to a protocol specific handler i.e. the protocol
handler class. This protocol handler knows how to create a connection to the resource
represented by the URL string and return an object corresponding to this connection. Since this
resolution occurs at construction time, any attempt to construct an instance of URL with an
unknown/invalid protocol will throw a Mal f or mredURLEXxcept i on during the construction itself.
The relevant portion of the URL constructor is shown below.

i f(handler == null &&
(handl er = get URLSt reanHandl er (protocol)) == null) {
t hrow new Mal f or mnedURLExcept i on(
"unknown protocol: " + protocol);

}

I will discuss the get URLSt r eamrHandl er method in detail later in this chapter.

Sun provides protocol handlers for several standard and widely used protocols such as http, ftp,
mailto, and gopher. Protocol handlers must follow a strict naming convention. The class must
always be named Handler. The package name must always have the protocol name as its last
part. For example, Sun’s protocol handler for the http protocol is called Handl er and is in the
package sun. net . www. pr ot ocol . htt p. Note that the package name ends with "http". In our
case the "jms" protocol handler will be in the j nsbook. j ns package and will be called Handl er .
To make the Java runtime aware of your own protocol handlers you must use the

j ava. prot ocol . handl er. pkgs system property. This property is set equal to a "|" delimited
list of package name prefixes. These prefixes will be used to resolve the specified protocol name
to a protocol handler object. Note that these package names must not include the last part i.e. the

2 The three dashes'//' isnot an error. Y ou will find out why in a moment.
2|t actually usesa URLSt r eanmHandl er Fact or y if oneis specified. The details of this case are beyond
the scope of this book.

protocol name. So, in our case this property will be set to j msbook (and not j nsbook. j ns), as
follows:

j ava. prot ocol . handl er. pkgs=j nsbook

The get URLSt r eanHandl er method

So why does Java impose such a strict naming convention for protocol handlers? The answer is
found by examining the URL class source code, more specifically the get URLSt r eantHandl| er
method implementation, which is called to resolve a protocol name to the corresponding protocol
handler. The relevant portion of this method is shown below for reference. Read the inline
comments for the explanation of the code fragment.

/1l Get the |ist of package prefixes

/1 protocol Pat hProp has been defined as

/1 "java.protocol.handl er. pkgs"

String packagePrefixList = null;

PackagePrefi xLi st = (String)

java. security. AccessController.doPrivil eged(
new sun. securi tK. action. Get PropertyAction(

pr ot ocol Pat hProp,""));

/1 Add the standard Er otocol s package to the list!

/[l First, if any package prefixes were found, append
/] another delimter, "|", to the end.

i f (packagePrefixList I'="")

) packagePrefi xList += "|";

/1 and now append "sun.net.ww. protocol” to the end.
/1 | nportant:

/1 Since this package is appended at the end of user
/'l specfied packages, a user can override any of the
/1 Sun provided protocol handl er inplenmentations, such
/1l as the one for http.

packagePrefi xLi st += "sun. net.ww. protocol ";

/1 And now parse through the |ist?

/1 Remember, "|" is the delinmter.
StringTokeni zer EackagePr efixlter =
new StringTokeni zer (packagePrefi xList, "|");

/1l Keep going until either we get a handler or

/1 no nore tokens remain.

/1l Note that there will always be at | east

/1l one token, sun.net.ww. protocol.

whil e (handler == null && packagePrefixlter.hashMreTokens()) {

/1l Get the next token
Stri?g packagePrefi x = packagePrefixlter.nextToken().trin();
try
[l Create the fully qualified class nane.
/1l Eg. jnsbook + jms + ".Handler"
String cl sNanme = packagePrefix + "." +
protocol + ".Handler";
Cass cls = null;
try {
/1 Now try loading the class with that nane.
cls = d ass. forNane(cl sNane) ;

}
catch (C assNot FoundException e) {
Cl assLoader cl =
Cl assLoader. get Syst entCl assLoader () ;

if (cl '=null) {
cls = cl.loadd ass(cl sNane) ;

}

}
if (cls !'=null) {
/'l create a new instance.
handl er = (URLStreanHandl er)cl s. new nstance();

}

catch (Exception e) {
[l any nunber of exceptions can get thrown here
/1 nove onto the next token?

}
} // while | oop.

Only one protocol handler object is created per VM per protocol. A new protocol handler is created
the first time it is required and is then cached for later use. This means that multiple threads may
use the same protocol handler simultaneously. Thus, the protocol handler implementation must be
thread safe. The URL class instance caches the protocol handler in a static hash table, which
allows any URL instance to access this handler. To get a better feel for this, let's take a look at the

remainder of the get URLSt r eanHandl er method. Once again, read the comments for the
explanation.

/ This is the static hash table used

/ to cache the protocol handlers.

/ Al access to this table nust be synchroni zed.
tatic Hashtabl e handl ers = new Hasht abl e();

static synchroni zed URLStreamHandl er get URLSt reanHandl er (
String protocol) {

/
/
/
S

/1l Have we already resolved this protocol ?
URLSt r eanHandl er handl er =
(URLSt r eanHandl er) handl ers. get (prot ocol) ;

5

e — =<

be not ?
ndler == null)
Use the factory (if anK)
We will not consider this case.
In a nutshell, a factory inplenments the
URLSt reanHand| er Factory interface and is
registered with the URL instance either during
construction or using the
set URLSt r eanHandl| er Fact ory net hod.
A factory can only be set once and simlar to the
protocol handlers is shared by all URL instances.
(factorr '= null) {
handl er =
factory. creat eURLSt r eanHand| er (protocol);

/1
if(

—_— N~~~

still don’t have a handl er?

(handler == null) {

/1 Al the logic to resolve a protocol
/1 string to a protocol handler.

/1 Plug in the the inplenentation that
/1 we saw above here

/| Cache the handler if one was found.
if (handler !'= null)
) handl ers. put (protocol, handl er);

}

// Return the handler to the caller.
return handl er;

}

The openConnect i on and openSt r eammethods

At this point the URL has successfully resolved the protocol string to a protocol handler. The
openConnect i on method may be used to gain access to a connection object. A connection
object must implement he URLConnect i on interface and is used to send and receive data to and
from the resource stream, respectively. The URL instance merely delegates the

openConnect i on method call to the protocol handler as shown below.

public URLConnection openConnection() throws java.io.lOException {
return handl er. openConnection(this);

The URL class also provides a helper method, openSt r eam for clients only interested in
receiving data from the resource stream. This method is shown below.

public final InputStream openStream() throws java.io.| OException {
return openConnection().getlnput Strean();

Our JMS Protocol Handler

As discussed above, the URL class serves as the gateway into Java’'s protocol handler
architecture. The URL class itself has very limited functionality beyond resolving a protocol string
into a protocol handler. Having said that, let's take a look at the implementation for our IMS
protocol handler. A class diagram showing all the pieces of the JMS protocol handler architecture
and how they fit together is shown in figure 1.

As with all protocol handlers, the JMS protocol handler conforms to the following rules.
1. The class name is Handler.
2. It extends the URLSt r eanHandl er class and provides a concrete implementation of the
openConnect i on abstract method.
3. Its package name has the protocol name as its last part i.e. it is in a package called
jmsbook.jms

interface partint URL Connection
URL StreamHandierractory protocal:String
host:String
file:String zﬂ
ref:String

content:Ohject

URL StreamHandier

|:|:| JmsURLConnection

-JdmsQutputStream

-JdmslnputStream
inputStream:inputStream

Handler § -, outputStream: OutputStream

Figure 1: The JMS protocol handler architecture

The openConnection method

Since the JMS protocol handler extends the URLSt r eanHandl er class, it must provide an
implementation of the openConnect i on method. The openConnect i on method is responsible
for returning a connection object to the caller. The caller may then use this connection object to
access the resource stream. The JMS protocol is configurable and hence needs to be initialized.
So, the first action taken by this method is to make sure that this instance has been initialized. This
is shown below.

synchroni zed(this) {
if(linitialized)
init();

Note that this code is synchronized since protocol handlers are shared entities and hence must be
thread safe. This is the only portion of the handler code that must be synchronized in this case,
since it is the only portion that results in changes to member variables®. Next, based on the
messaging style specified in the URL (i.e. the host name portion of the URL string), the
openConnect i on method appropriately initializes our implementation of the connection object,
JnmsURLConnect i on, and returns it to the caller, as shown below.

i f(u.getHost().equal s("Queue"))

return new JnsURLConnecti on(queueConnecti on, u);
el se if(u.getHost().equal s("Topic"))

return new JnsURLConnecti on(topi cConnection, u);

2 |f ahandler does not have any member or class variables or if these do not change through the life of the
handler then no synchronization is necessary since the handler isinherently thread safe, but that is not the
case here.

el se
t hrow new | OException("Host name nmust be Topic or Queue.");

As I'll discuss in detail later, the Jns URLConnect i on class extends the URLConnect i on class
and overrides a few key methods.

The initialization method —i ni t

The openConnect i on method calls the i ni t method if the handler instance has not been
initialized. The JMS protocol handler class is configurable through a properties file, the name of
which is specified in the j nsbook. j ns. properti esFi | e system property as shown below.

j ava —q nsbook. j ns. propertiesFil e=C./tenp/jmsProtocol.properties
. the rest of the java command

The i ni t method checks to see if a properties file has been specified and if so loads it in. This is
shown below.

/1l Has a properties file been specified?
String filename = System get Property("jnsbook.jns. propertiesFile");
/1 exception handling ignored in this snippet?
if(filename !'= null
props. |l oad(new Fil el nput Stream(fil enane));

The handler has two member variables that must be initialized; a reference to a queue connection
and a reference to a topic connection. As we already know, connection objects in JMS are
obtained from a vendor specific connection factory. | will use the same the same strategy as | did
in chapter 8 for eliminating the need of this vendor specific code in the JIMS protocol handler itself
and to support any JMS provider. This is shown in figure 2 and in the code fragment from the

i ni t method below.

interface
JmsQueneConnecionFactory

7 ?

SunJmsQueueConnectionFactoryimpl FioranoJmsQueueConnectionFactordmpl

interface
JmsTopicConnectionFactory

i A

SunJmsTopicConnectionFactondmpl FioranoJmsTopicConnectionFactondmpl

Figure 2: The JMS Protocol Queue and Topic Connection Factory Hierarchy

/1l Get the queue connection factory..
String factoryd ass =
props. get Property("JnsQueueConnecti onFactory");

[if the property JnsQueueConnectionFactory is not
/ defined then use the default, which is
/ Sun Java Message Queue
f(factoryC ass == null)
factoryd ass = "jmsbook. j ms. SunJnsQueueConnect i onFact oryl npl ";

/
/
/
i

/]l Create a new instance of the factory class
JnsQueueConnectionFactory jnsQf = (JnsQueueConnecti onFactory)
(d ass. forNane(factoryd ass).new nstance());

/1 use the factory class instance to the vendor
/'l specific Queue Connection factory.
QueueConnecti onFactory qcf =

j meQxf. get QueueConnecti onFact ory(props);

/1l Get the topic connection using the connection factory
/] and start 1It.

queueConnection = qcf. creat eQueueConnection();
gqueueConnection.start();

/1l Get the queue connection factory..
factoryCd ass = props. get Property("JnmsTopi cConnecti onFactory");

[l if the property JnmsTopi cConnectionFactory is not
/1 defined then use the default, which is
/1 Sun Java Message Queue
if(factorydass == null)

factoryd ass = "jnsbook. j ns. SunJnsTopi cConnecti onFact oryl npl";

/1l Create a new instance of the factory class
JnsTopi cConnecti onFactory jnsTcf = (JnsTopi cConnecti onFact ory)
(d ass. forNane(factoryd ass).new nstance());

/1 use the factory class instance to the vendor
/'l specific Topic Connection factory.
Topi cConnecti onFactory tcf =

j meTcf. get Topi cConnecti onFact ory(props);

/1l Get the topic connection using the connection factory
/] and start it.

t opi cConnecti on = tcf.createTopi cConnection();

t opi cConnection.start();

Initialization is conplete. _
Set the flag so that 1nit is not called again.
tialized = true;

/1
/1
i ni

A sample properties file for configuring the JMS protocol handler is shown below.

The factory to use to get the initial Connection Factory
JnsQueueConnect i onFact ory=

j mebook. j ms. Fi or anoJnsQueueConnecti onFact oryl npl
JnmsTopi cConnect i onFact ory=

j mebook. j ms. Fi oranoJnsTopi cConnecti onFact oryl npl

Fiorano MQ specific property
(CFact or yName=pr i mar yqcf
TCFact or yNane=pri mar yt cf

You'll see that this is very similar to the gspace. properti es file used to configure QSpace in
chapter 8. In the example shown above, the properties file configures the JIMS protocol handler to
work with Fiorano’s FioranoMQ. The implementation of the factory class,

Fi or anoJnsQueueConnect i onFact oryl npl , is the same as the one in chapter 8 except that
in chapter 8 this class was called Fi or anoQ@SpaceFact or yl npl and it implemented the
QSpaceFact oy interface. Take a look yourself.

package jnsbook. | ns;
Import fiorano.jns.rtl.*;
public class Fi oranoJnsQueueConnecti onFact oryl npl
i mpl ements JnsQueueConnecti onFactory {

public javax.jms.QueueConnectionFactory
getQueueConnectionFactory(java.util.Properties props)
throws javax.jms.JMSException {

FELTLIIEEE bbb rriniirrrri

/1 The same logic as in chapter 8. //

LEETEEEEEErrrrrr bbb inrri

fiorano.jms.rtl.Fioranolnitial Context ic = null

ic = new fiorano.jns.rtl.Fioranolnitial Context();

ic.bind ();

j avax. j ns. QueueConnecti onFactory factory
(j avax.j ms. QueueConnecti onFactory)ic.|

props. get Property(" QCFact oryName").trin()

I c. di spose();

return(factory);

;okup(
)

}

The factory class for getting the initial topic connection factory is similar. This was not shown in
chapter 8 since it relates to publish-and-subscribe. So, I'll include an example for FioranoMQ
below.

package j nsbook. j ns;
irrBort fiorano.jms.rtl.*;
public class FioranoJnsTopi cConnecti onFactoryl npl
i mpl ements JnsTopi cConnecti onFactory {

public javax.ms. Topi cConnecti onFactory
get Topi cConnecti onFactory(java.util.Properties props)
throws javax.jns. JMSExcepti on

fiorano.jns.rtl.Fioranolnitial Context ic = null;

ic = new fiorano.jns.rtl.Fioranolnitial Context();

ic.bind ();

j avax. j ms. Topi cConnecti onFactory factory
(javax.j ms. Topi cConnecti onFactory)ic.|

props. get Property(" TCFact oryNane").trim)

I c. di spose();

return(factory);

;okup(
)

}

Perusing through the i ni t method you will notice that if no properties file is specified then it is
assumed that Sun’s Java Message Queue is being used. Also it is possible to have a mix and
match of different messaging products. For example, there is no reason why you cannot use a
different JMS provider for point-to—point messaging than the one used for publish-and-subscribe
messaging. A properties file that uses FioranoMQ for point—-to—point and Sun’s Java Message
Queue for publish—and-subscribe is shown below.

The factory to use to get the initial Connection Factory

Use Fi oranoMQ for point-to-point.
JmsQueueConnect i onFact ory=
j mebook. j ms. Fi or anoJnsQueueConnecti onFact or yl npl
Use Sun’s Java Message Queue for publish-and-subscri be.
JmsTopi cConnect i onFact ory=
j mebook. j ms. SunJnsTopi cConnecti onFact oryl npl

Fiorano MQ specific property
(CFact or yName=pri mar yqcf

Also, the code indicates that this properties file is equivalent to the following properties file in which
the topic connection factory implementation is not specified.

The factory to use to get the initial Connection Factory
Use Fi oranoMQ for point-to-point.
JnsQueueConnect i onFact ory=

j msbook. j ms. Fi or anoJnsQueueConnecti onFact oryl npl

Fiorano MQ specific property
(CFact or yName=pri mar yqcf

This is because if a factory is not specified in the properties file then the factory class for Sun’s
Java Message Queue is used.

Look at how the init method handles JMSExcept i ons. It checks for a "linked" exception and if one
exists, the method throws a new IOExcpetion with the message from that [linked] exception
instead of using the message from the JMSExcept i on. This is shown below.

catch(JMSException e) {
i f(e.getLinkedException() !'= null)
t hrow new | OExcepti on(
I e. get Li nkedException(). get Message());
el se
t hrow new | OException(e. get Message());

The entire source for the Handl er class is included below for reference.

package j nsbook. j ns;

I mport java. net. URL;

i mport | ava. net. URLConnecti on;

i mport | ava. net. URLSt reanHandl er;
i mport | ava.io. Filel nputStream

i mport | ava.io.| OExcepti on;

i mport Java.util.Properties;

i mport | avax.jns.*;

public class Handl er extends URLStreamHandl er {
private QueueConnecti on queueConnection
private Topi cConnection topicConnection
private boolean initialized = fal se;

?ubl ic Handler() {

nul | ;
nul | ;

prot ected URLConnecti on openConnecti on(URL u)
t hrows | OException

/!l Make the initialization thread safe.
synchroni zed(this) {
if(linitialized)

init()
}

i f(u.getHost().equal s("Queue"))
return new JnsURLConnecti on(queueConnecti on, u);
el se if(u.getHost().equals("Topic"))
| return new JnsURLConnecti on(topi cConnection, u);
el se
t hrow new | OException("Host name nmust be Topic or Queue.");

}

private void init() throws | OException

try {
Properties props = new Properties();
String filenane =
System get Property("j nmsbook. jms. propertiesFile");
if(filenanme != nul
props. | oad(new Fil el nput Stream(fil enane));

String factoryd ass =
props. get Property("JnsQueueConnecti onFactory");
i f(factoryd ass == nul
factoryd ass =
"j mebook. j ns. SunJnsQueueConnecti onFact oryl npl";

JnsQueueConnecti onFactory jnsQf =
(JmsQueueConnect i onFact ory) (C ass. f or Name(
factoryd ass).new nstance());

QueueConnecti onFactory qcf =

j meQxf. get QueueConnecti onFact ory(props);
gqueueConnection = gcf. creat eQueueConnection();
queueConnection.start();

factoryd ass =
props. get Property("JnsTopi cConnecti onFactory");
i f(factoryd ass == nul
factoryd ass =
"j msbook. j ms. SunJnsTopi cConnect i onFact oryl npl ";

JnsTopi cConnecti onFactory jnsTcf =
(JmsTopi cConnect i onFact ory) (Cl ass. f or Name(
factoryd ass).new nstance());

Topi cConnecti onFactory tcf =

j meTcf. get Topi cConnecti onFact ory(props);
t opi cConnecti on = tcf.createTopi cConnection();
t opi cConnection.start();

initialized = true;

}
catchg JMBException e) {
i f(e.getLinkedException() !'= null)
t hrow new | OExcepti on(
| e. get Li nkedException(). get Message());
el se
t hrow new | OException(e. get Message());

}
catch(Exception e)
t hrow new | OException(e. get Message());

}

The JImsURLConnection Class

As you've seen before, the openConnect i on method in the JMS protocol handler class returns
an instance of the Jms URLConnect i on class. This class extends the URLConnection class and
overrides the set / get Request Property, get | nput St ream get Qut put St r eam and
connect methods. | will discuss each one of these methods in a moment, but first let’s look at the
constructor. The one and only constructor takes two parameters: a JMS Connect i on object and
a URL object. The type of connection passed in depends on the messaging style to be used. The
JMS protocol handler makes this decision. At various points in the Jms URLConnect i on
implementation you will see the code checking for the type of the connection object. The
constructor is shown below for reference.

publi ¢ JmsURLConnecti on(Connection connection, URL url)

super (url);
i f(connection == null)
t hrow new Runti neExcepti on(
"Cannot specify null connection.");
t hi s. connecti on = connecti on;

Now let’s look at the methods that this class overrides from the base class.

The set/ get Request Property methods

As we already know, messages in JMS are associated with a delivery mode, a priority, and a
time—to-live. The JnsURLConnect i on class provides default values for three "request”
properties as and allows the client (i.e. user) to configure these properties at any point in time. The
default values of these properties are shown below.

/'l The delivery node; default is persistent.
private int persistence = DeliveryMde. PERSI STENT;
/1 The priority; default is 9 (highest)

private int priority = 9;

/1l The time-to-live; default is 0 (forever)
private int ttl = 0,

A client can get the value of any of these properties at any time by calling the
get Request Pr oper t y method passing in the name of the property required. An example of
querying the connection for the delivery mode is shown below.

/1 uc is a JnsURLConnetion

String persistent = uc.get Request Property("persistent");
In the above code fragment, if the value of per si st ent is "true" after the statement is executed
then the delivery mode is persistent. Note the name of the persistence property is "persistent”.
Similarly to get find out the priority and time—to-live properties call the get Request Property
method with the property names "priority" and "timeToLive" respectively.

To change the value of any of these properties use the set Request Pr oper t y method. For
example, to change the delivery mode to non—persistent, change the priority to 4, and change the
time—-to-live to 10 seconds

set Request Property(" persi st ent f al se");
set Request Property("priority",
set Request Property("ti neToLi ve"," 10000")

If an invalid property name or value is passed in to either of these methods, a
Runt i neExcept i on will be thrown.

The connect method
All this method does is set the connect ed member variable in the base classtot r ue.

public void connect() throws | OException {
this.connected = true;

The get | nput St r eammethod

This method checks to see if the JMS connection that it has is a queue connection or a topic
connection and then based on this it creates the appropriate session and message consumer. It
then creates a new instance of the Jnsl nput St r eamclass passing in the session and the
message consumer. By creating and passing in a new instance of the session and message
consumer we ensure that we do not violate the single-threaded access requirement for these
objects. This is shown below.

/1 is this a queue connection?
i f(connection instanceof QueueConnection) {
Il Yes?
/1 Then create a queue session and receiver
session = (CpeueCDnnection)connection).createCpeueSe?s:on()
al se, 1);
Queue queue = g(CueueSession)session).createCpeue(
this.getURL().getFile().substring(l));
consumer = ((QueueSession)session). createRecei ver(queue);

el se {

/1 No? then it is a topic connection

/'l So create a topic session and subscri ber

session = ((Topichnnection)connection).createTopicSe?s:on()
al se, 1);

Topic topic = g(TopicSession)session).createTopic(

this.getURL().getFile().substring(l));
consuner = ((Topi cSession)session).createSubscriber(topic);

/1 And now return an input streanf
return(new Jnsl nput St r eam(sessi on, consuner)) ;

Jnsl nput St r eamis a private class that extends the j ava. i 0. | nput St r eamclass and
provides a concrete implementation of the r ead method. When the client calls the r ead method
(or a method that results in the r ead method being called, such as r eadUTF, r eadDoubl e, or
any other <read> method on any decorating input stream.), it first checks if it there are any more
bytes in the buffer. If no more bytes exist, it calls the private method r eadMessage. This method
checks if it there are any more bytes remaining in a previous [partially read] message. If no such
message exists it calls the r ecei ve method on the message consumer that was passed in during
construction. The relevant portion of the r eadMessage method is shown below.

/'l The size of the buffer
int size = 1024;
try {
/1l Does a previous partially
/] read nessage exist?
if(meg !'= null)
bytes = new byt e[si ze];
/]l Get the next 1024 (or |ess) bytes
int n = nmeg.readBytes(bytes);
/1 read 1024 bytes, just return?
if(n == size

return;
/1 read | ess than 1024 bytes.
/'l we need to truncate our buffer to
/1 the right size.
elseif(n!=-18&& n < size) {
truncat eTo(n);
return;

}

/1 == -1 neans no nore
/1l bytes in the nessage.
= null;

es = null;

¥

/[Either this is the first nessage

/ being read, or the previous nessage

/ has no nore bytes as deternined above.
msg = (BytesMessage)consuner. receive();

/1 Does this nessage have a Messagelengt hl nByt es
/1 property. That way we know the exact size

/1 of the buffer required.

int length = size;

tr

y {
I ength = meg. getl nt Property("MessagelLengt hl nByt es");

atch(Exception e) {

t
/'l Quess not?

~— O

/]l Create the buffer and read the first "length" bytes.
bytes = new byte[l ength];
int n = nmeg.readBytes(bytes);
if(n == size)

return;
/1 This occurs if the MessagelLengthl nBytes property was
/1 not found and the nessage has | ess than 1024 bytes.

else if(n!=-1&&% n < size) {
truncat eTo(n);
return;
el se . o
t hr ow new | OException("Error receiving nessage.");

Let's quickly look at the t r uncat eTo method, which is called when the r eadByt es method call
on the message reads fewer than expected (1024) bytes. Note the use of the
Syst em ar r ayCopy method for improving the efficiency of the memory copy.

private void truncateTo(int n) {
byte[] tenp = new byte[n];
System arraycopy(bytes, 0,tenp, 0, n);
bytes = tenp;

The get Qut put St r eammethod

This method checks to see if the JMS connection that it has is a queue connection or a topic
connection and then based on this it creates the appropriate session and message producer. It
then creates a new instance of the Jns Qut put St r eamclass passing in the session and the
message producer. By creating and passing in a new instance of the session and message
producer we ensure that we do not violate the single-threaded access requirement for these
objects. This is shown below.

/] is this a queue connection?
i f(connection instanceof QueueConnection) {
Il Yes?
/1l Then create a queue session and receiver
session = ((CueueCDnnection)connection).createCpeueSes?i?n(1
al se, 1);
Queue queue = ((QueueSessi on)session).createQueue(
this.getURL().getFile().substring(l));
producer = ((QueueSessi on)session).createSender (queue);

el se }

/1l No? then it is a topic connection

/1l So create a topic session and publisher

session = ((Topichnnection)connection).createTopiCSFSEion()

al se, 1);

Topic topic = ((Topi cSessi on)session).createTopi c(
this.getURL().getFile().substring(l));

producer = ((Topi cSession)session).createPublisher(topic);

ret urn(new JnsCQut put St rean{ sessi on, producer));

JnsQut put St r eamis a private class that extends the j ava. i 0. Qut put St r eamclass and
provides a concrete implementation of the wr i t e method. When a client calls the wr i t e method
(or a method that results in the wr i t e method being called, such aswri t eUTF, wr i t eDoubl e,
or any other <write> method on any decorating output stream.), it updates an internal byte
stream/buffer as shown below.

public void wite(int b) throws | OException {
i f(baos == null
baos = new Byt eArrayQut put Strean();
baos. write(b);

}

A client can call wr i t e as many times as needed. Finally, when the entire message is written, the
client must call f | ush to actually send the message. The f | ush method will call the private

wr i t eMessage method that contains all the logic for dealing with the message producer. The
relevant portion of this method is shown below.

try {
/1l Create a new bytes nessage
Byt esMessage nsg = session. creat eByt esMessage();
/1l and wite the bytes to it?
nmsg. wit eByt es(bytes);

/1 this will inprove efficiency while reading.
nsg. setl nt Property("MessagelLengt hl nBytes", bytes.|ength);

/1 what type of producer is this?

/1l depends on the nessaging style.

i f(producer instanceof QueueSender)

((QueueSender) producer) . send(nsg,

persi stence,priority,ttl);

el se

((Topi cPubl i sher) producer). publ i sh(nsg,

persi stence,priority,ttl);

For example, let's assume that a message consists of some basic information about a person,
such as their name, age, and sex. Such a message could be sent as follows

/1 uc is a JmsURLConnecti on

/1 Wap/Decorate the JnsQut put Stream wi th a Dat aQut put St ream
Dat aQut pput Stream dos = new Dat aQut put St rean(uc. get Qut put Stream()) ;
/[l Wite the name (string), sex (string)

/1 and age (long) to the stream

dos.mwiteUTanane);

dos. writeUTF(sex);

dos. writelLong(age);

/1l send the message.

dos. flush();

/1 done

dos. cl ose();

A client could receive this message as follows.

/1 uc is a JmsURLConnecti on

/1l Wap/Decorate the JnslnputStreamw th a Datal nput St ream

Dat al npput Stream di s = new Dat al nput St rean(uc. get I nput Stream());
/| Read the name (string), sex (string)

/1l and age (long) fromthe stream

String nane = dos.readUTF(nane);

String sex = dos.readUTF(sex);

Long age = dos.readlLong(age);

/| done

di s.close();

Later on in this chapter | will show two complete examples of programs using the JMS Protocol
handler.

The entire implementation of Jns URLConnect i on is shown below for reference.

package jnsbook. | ns;

I mport java. net. URL;

i mport | ava. net. URLConnecti on

i mport | ava. net. URLStr eanHandl er
i mport Java.io.*;

import Java.util.Properties;

i mport | avax.jns.*;

public class JnmsURLConnection extends URLConnection {
private Connection connection = null
private int persistence = DeliveryMde. PERSI STENT
private int priority = 9;

private int ttl = 0;

publ i c JmsURLConnecti on(Connection connection, URL url) {
super (url);
i f(connection == nul

t hrow new Runti meExcepti on(.
_ _ "Cannot specify null connection.");
this. connection = connection

public void set RequestProperty(String key, String value) {
bool ean invalidkey = fal se;
try {
i f(key.equal s("persistent"))
i f(val ue. equal sl gnoreCase("true")
persi stence = DeliveryMde. PERSI STENT,;
el se if(val ue. equal sl gnoreCase("fal se")
persi stence = DeliveryMde. NON_PERSI| STENT;

el se _
t hrow new Exception();

}
el se if(key. equals(priority")
priority = Integer. parselnt
1f(priority <O || priorit
priority = 9;
t hr ow new Exceptlon()

)
(val ue);
y>9g{

el se if(key.equal s("tinmeToLive")) {
ttl =1In teger par sel nt (val ue) ;
if(ttl <0) {
ttl = 0;
) t hrow new Exception();
el se

i nval i dkey = true

}
catch(Exception e)
t hrow new Runti nmeExcepti on(
"Invalid request header value " + value +
) " for field " + key);

i f(invalidkey)
t hrow new Runti neExcepti on(
“Invalid request header " + key);

public String getRequestProperty(String key) {
i f(key.equal s("persistent") {
i f(persistence == DeliveryMde. PERSI STENT)
return(new String("true"));
el se
return(new String("fal se"));

}
else if(key.equals("priority"))

return(new I nteger(priority).toString());
el se if(key.equal s("tinmeToLive")

return(new I nteger(ttl).toString());

t hrow new Runti neExcepti on(
“Invalid request header " + key);

public void connect() throws | OException

this.connected = true;

?ublic I nput Stream get I nput Stream() throws | OException

i f(!connected)
connect ();

MessageConsumer consuner = null;
Session session = null;
try {
i f(connection instanceof QueueConnection) {
session = ((QueueConnecti on)
connection).creat eQueueSessi on(fal se, 1);
Queue queue = ((QueueSessi on)
session). creat eQueue(this. get URL(
).getFile().substring(1));

consuner = ((QueueSessi on)

sessi on). cr eat eRecei ver (queue) ;

el se {

session = ((Topi cConnecti on)
connection).createTopi cSession(fal se, 1);

Topic topic = ((Topi cSessi on)
session). createTopic(this.get URL(

).getFile().substring(1l));

consumer = ((Topi cSessi on)

sessi on). creat eSubscri ber (topic);

return(new Jnsl nput St r eam(sessi on, consuner)) ;

}
catchg JMBException e) {
i f(e.getLinkedException() !'= null)
t hrow new | OExcepti on(
| e. get Li nkedException(). get Message());
el se
t hrow new | OException(e. get Message());

}
public Qutput Stream get Qut put Stream() throws | OException

i f(!connected)
connect () ;

MessagePr oducer producer = null;
Session session = null;
try {
i f(connection instanceof QueueConnection) {
session = ((QueueConnecti on)
connecti on). creat eQueueSessi on(fal se, 1);
Queue queue = ((QueueSessi on)
session). creat eQueue(this. get URL(
).getFile().substring(l));
producer = ((QueueSessi on)
sessi on). cr eat eSender (queue) ;

el se {

session = ((Topi cConnecti on)
connection).createTopi cSession(fal se, 1);

Topic topic = ((Topi cSession)
session).createTopic(this.get URL(

).getFile().substring(l));

producer = ((TopicSessionL

session). creat ePubl i sher(topic);

}
ret urn(new JnsCQut put St rean{ sessi on, producer));

}
catch(JMSException e) {
i f(e.getLinkedException() !'= null)
t hrow new | CExcepti on(
| e. get Li nkedException(). get Message());
el se
t hrow new | OException(e. get Message());

}

private class JnsCQut put Stream ext ends Qut put Stream {
private ByteArrayCQutputStream baos = nul |
private Session session = null;
private MessageProducer producer = null;

private JmsQut put St rean(Sessi on sessi on
MessagePr oducer producer) {
this. session = session;
this. producer = producer;

}
public void wite(int b) throws | OException

i f(baos == nul
baos = new Byt eArrayQut put Strean();
baos. write(b);

public void flush() throws | OException

i f(baos == null)
return;
writ eMessage(baos. toByteArray());
baos. cl ose() ;
baos = nul|;

public void close() throws | OException

flush();

try {
producer. cl ose();
session.close(?;
producer = nul
session = null;

}
catch(JMSException e) {
i f(e.getLinkedException() !'= null)
t hrow new | OExcepti on(
| e. get Li nkedException(). get Message());
el se
t hrow new | OException(e. get Message());

}
private void witeMessage(byte[] bytes) throws | CException

try {
Byt esMessage nsg = session. creat eByt esMessage();
nmsg. wit eByt es(bytes);

/1 inmprove efficiency while reading.
nsg. setl nt Property("MessagelLengt hl nByt es”
byt es. | engt h);
i f(producer instanceof QueueSender)
((QueueSender) producer) . send(
nsg, persi stence, priority,ttl);
el se
((Topi cPubl i sher) producer) . publ i sh(
neg, persi stence, priority,ttl);

}
catchg JMBException e) {
i f(e.getLinkedException() !'= null)
t hrow new | CExcepti on(
| e. get Li nkedException(). get Message());
el se
t hrow new | OException(e. get Message());

}

private class Jnsl nput St ream ext ends | nput Stream {
private Session session = null
private MessageConsuner consumer = null;
private byte[] bytes = null;
Byt esMessage nsg = nul | ;
private int index = O;

private Jmsl nput Stream Sessi on session
MessageConsumer consuner) {
t hi s. session = session;
thi s. consuner = consuner;

}
public int read() throws | OException

if(bytes == null) {
readMessage() ;
i ndex = 0;

i ndex < bytes.length) {

int retvVal = bytes[index] & 0Ox

i f(index == bytes.length-1)
byt es
i ndex

ff;
{
nul | ;

0;

el se
i ndex++;
return(retVval);

el se {
return(-1);

}

public int available() throws | OException

if(bytes !'=null)
return(0);
return(bytes.length — index);

public void close() throws | OException

try {
consuner. cl ose();

sessi on. cl ose(),
session = null;
consunmer = null;

}
catch(JMSException e) {
i f(e.getLinkedException() !'= null)
t hrow new | OExcepti on(
| e. get Li nkedException(). get Message());
el se
t hrow new | OException(e. get Message());

}

private void readMessage() throws | CException

int size = 1024;
try {
if(meg !'= nul
bytes = new byte[size];
int n = nmeg.readBytes(bytes);
if(n==size)
return;
else if(n!=-1&& n < size) {
truncat eTo(n)
return;

aw—’

g = (BytesMessage)consumner.receive();
int length = size;
try {
I ength = nsg. getlntProperty(

) "Messagelengt hl nByt es") ;
catch(Exception e) {

bytes = new byte[l ength];
int n = nmeg.readBytes(bytes);
if(n == size)
return;
elseif(n!=-1&&% n < size) {
truncat eTo(n);
return;

el se _
t hrow new | OExcept i on(
"Error receiving nessage.");

}
catchg JMBException e) {
i f(e.getLinkedException() !'= null)
t hrow new | CExcepti on(
| e. get Li nkedException(). get Message());
el se
throw new | OException(e. get Message());

}

private void truncateTo(int n) {
byte[] tenp = new byte[n];
System arraycopy(bytes, 0,tenp, 0, n);
bytes = tenp;

Creating Programs that use the JMS Protocol Handler

Let's create a pair of programs, one for sending messages and one for receiving messages, using
the JMS protocol handler architecture.

The Sender Program

The goal of this program is to send a message on a queue called "ModiQueue". The program is
shown in its entirety below. Note how different this program looks than traditional JMS programs.
For example, there are no import statements importing classes from the j avax. j ns package. In
fact apart from the name of the protocol (jms) in the URL string there is no indication of JMS at all.
If for some reason, we wanted to send the "request/message" over http instead of a JMS provider,
we simply change the URL; no other code changes are required in this program. Also note how
easy it is to switch between the point-to—point and publish—and-subscribe messaging styles. Just
change the URL string "jms://Queue/ModiQueue" to "jms://Topic/ModiTopic" assuming that
"ModiTopic" is a valid JIMS Topic.

i mport java. net.*;

i rrBort java.io.*;
public class Sender ({
public {stati c void main(String[] args) {
try
/1 This URL indicates a ﬁOi nt -t o—poi nt
/1l messaging style and the destination
/1 " Modi Queue".

URL url = new URL("jns:// Queue/ Modi Queue");
[TURL url = new URL("jns://Topic/ Mdi Topic");

I/ CGet a connection
URLConnection uc = url.openConnection();

Configure this instance of

the URL connection

We want the nmessages non-persistent and
to expire in 10 seconds.

. set Request Property("persistent”,"fal se");
. set Request Property("ti meTolLi ve", "10000");

cCC T~~~
00 ~———

/]l Get the output streamto wite nessages to.
Qut put Stream os = uc. get Qut put Stream) ;
Dat aQut put St ream dos = new Dat aQut put Strean{ 0s) ;

/1l The nessage contains two strings.
dos.mwiteUTFg"Fbllo!");

dos. writeUTF(" Tarak Modi");

/1 This will actually send the nessage.
dos. flush();

/| Done?

dos. cl ose();

}
catch(Exception e)
e.printStackTrace();

Systemexit(-1);
}

The steps taken by this program are shown in figure 3.

UBRL Handler JmsURL Connection JmsQutputStream

Sender

I
I
Tinew URL("jms:HGueueJModi@ueue")

gji |

1. 1igetURLStreamHandler]'jms™

1.1 1inew Handlerd

HopenZonnection(

2 1openConnectionithis

2.1 10new JmsURL(EEnnection(URL}n

T
: . o I
HConfigure this cunnectll n objectvia setRequestF‘rnper!lly o L
I |
I |
I |
Arget0utputStream) A | L_|
i | BT 4 A mewd
I |
I |
I |
I | L T
I | I |
Abrite UTF " Hello" | | I |
[[T [T==1—
I | I
I | I
Biwerite UTF " Tarak o'y | | I L
I | I
I | I
Tiush | | I L
| T | B
I | I
I | I
2iclose | | I T
| T | ==
I | I
I | I
I | I
I | I
I | I
I | I
I | I
I | I

Figure 3: The Sender Sequence Diagram

The Receiver Program
i nport java.net.*;
i nport java.io.*;

public class Receiver {
publ i? static void main(String[] args) {
try

/1 This URL indicates a point-to—point
/1 messaging style and the destination
/1 " Modi Queue".
URL url = new URL("jns://Queue/ Modi Queue");
[TURL url = new URL("jns://Topic/ Mdi Topic");

/1 Get the input stream
InputStreamis = url.openStrean();
Dat al nput Stream di s = new Dat al nput Strean(i s);

/'l Read the nmessage fromthe stream
String nessage = dis.readUTF();

/1 Should see "Hello!"

System out . println(nessage);

message = di s.readUTF();

/1 Should see "Tarak Mdi"

System out. printl n(nessage);

/1 Done?
dis.close();

catch(Exception e) {
e.printStackTrace();

System exit(-1);
}

The goal of this program is to receive messages from a queue called "ModiQueue". The program
is shown in its entirety below. Once again note how different this program looks than traditional
JMS programs and how easy it is to switch between the point-to—point and publish—and-
subscribe messaging styles. Just change the URL string "jms://Queue/ModiQueue" to
"ims://Topic/ModiTopic" assuming that ModiTopic is a valid JIMS Topic.

UBRL Handler JmsURLConnection JmsihputStream

i : : : :
Tinew URL("jms:HGueueJModi@ueue") | | |
== | I |
| I |
I |
1.1IgetURLStreamHandIer%'jms") | |
| I |
1.1 1new Handlerp | I |
I |
I |
I |
I |
_'J— | I |
| I |
2lopenStream | | | |
=T 2.1Iopen00nnection(thisg. | l |
- I |
2.1.1InemesURL(EEnnection(URL}l :
I o=
|
|
L | |
| |
2.1.EIgetInputStreamJ_ |
|
2.1 2 e |
L T |
=n | I |
I | I |
I | I |
I | I |
AreadUTF | | | |
I I I =)
I | I
I | I
AireadUTF | | | L
I | I =
I | I
I | I
I | I -
Alclosze | | | |
fBm=—]
I | I
I | I
I | I
I | I T
I | I |
I | I |
I | I |
I | I |
L | | | |

Figure 4: The Receiver Sequence Diagram

Since, our JMS protocol handler uses non—durable topic subscriptions, make sure that you start
the Receiver before you run the Sender when using topics. Remember, JMS does not "remember"
published messages for non—durable topic subscriptions. A useful enhancement to the protocol
handler would to add the capability of having durable topic subscriptions. | recommend using

"request” properties to allow users to configure this, similar to how we allow persistence mode,
time—to-live, and priority to be configured.

Summary

Throughout this book, I've emphasized on designing your enterprise applications without relying
or getting married to a specific JMS provider. I've advocated total fidelity to the JMS specification.
Now in this chapter, I've shown you a way to create a facade that decouples your application from
JMS itself using Java’s protocol handler architecture. An efficiency introduced as a result of this
architecture is that only one queue and one topic connection will be created per VM since only one
instance of a protocol handler exists per VM. Additional benefits of this include a reduced learning
curve for most Java developers, since they are already familiar with using URLs and the ability to
leverage a well-designed and time-tested architecture in the Java platform.

Chapter 10

Custom JSP tags for JIMS®

In this chapter, | continue my quest of isolating JMS from the end developer. This time, the focus is
on the JSP developer. Most JSP developers that I've worked with love JSP because it is easy to
use, yet gives them an awesome amount of power to design flexible webpages. These developers
are excellent web designers because web designing is their passion. They are not interested in the
details of n—tier architectures and distributed programming, let alone the the intricacies and
complexities of asynchronous processing with JMS. Having said that, it may be necessary to
provide them with the power of asynchronous processing. The fact that both JSP and JMS are key
pieces of J2EE reinforces this necessity.

JSP 1.1 introduced an extremely valuable new capability: the ability to define your own JSP tags.
Such tags are called custom tags. Custom tags may be grouped into tag libraries and be reused in
any number of JSP files. Custom tags allow complex programming logic to be boiled down into a
set of simple and easy to use tags, which JSP developers can very easily use while developing
content?. Although custom tags require a little bit more setup work than would normally be
required, the benefits definitely outweigh the costs.

In the previous chapter, | showed you how to create a custom protocol handler to abstract IMS
from your organization and to save both time and money by not having to subject the entire
development organization to a steep JMS learning curve. In this chapter, | will build upon this
architecture and create custom JSP tags that allow JSP developers to use JMS without having to
deal with JMS or even network programming as in the previous chapter.

For example, using the custom tag that | will create in this chapter, a JMS developer can
send/publish a message as shown below

<jnms:write destination="jns://Queue/ Modi Queue" message="Hello World"/>
and can receive a message as follows
<jns:read destination="jns://Qeuel/ Modi Queue"/ >

Note the format of the dest i nat i on attribute above. Remember, this is the format required by
the underlying JMS protocol handler that the custom tags are based upon.

In general, a custom tag consists of three pieces:
1. Atag library descriptor that maps the XML tag to its implementation i.e. the tag handler
class (see #2 below).
2. Atag handler class that defines the tag’s behavior. When the web server comes across a
custom tag, it relies on the handler class for that tag to do all the work.
3. JSP files that use the custom tag.

% To compile and execute the code in this chapter you will need awebserver that supports JSP 1.1, such as
Tomcat 3.1

% JSP has allowed developersto access JavaBeans from the very beginning. So there has always been away
to isolate complex logic. However, custom tags have a couple of benefits over beans. First, beans cannot
manipul ate JSP content. Second, well-designed custom tags can alow a much simpler representation of
complex operations.

The first two pieces are created by the "tag developer" and are only done once. The last piece is
created by the JSP developer while designing the content and [re]uses the first two pieces.

The Custom Tags

The write Tag
We will create two custom tags. The first tag, wr i t e, is for sending/publishing messages to a
destination. The definition of this tag is shown below.

<t ag>
<name>wr it e</ nane>
<ta?class>tags.jnB.JnBVViteTa </tagcl ass>
<i nf 0>Send/ Publ i sh a nessage</i nf o>
<attribute>
<nane>desti nati on</ name>
<requi red>true</required>
<rtexprval ue>true</rtexprval ue>
</attribute>
<attribute>
<nane>nessage</ name>
<requi red>f al se</required>
<rtexprval ue>true</rtexprval ue>
</attribute>
<attribute>
<name>ttl </ name>
<requi red>f al se</requi red>
<rtexprval ue>true</rtexprval ue>
</attribute>
<attribute>
<nane>pri ority</ nane>
<requi red>f al se</requi red>
<rtexprval ue>true</rtexprval ue>
</attribute>
<attribute>
<nane>per si st ent </ nane>
<requi red>f al se</required>
<rtexprval ue>true</rtexprval ue>
</attribute>
</tag>

The following information can be derived from the above tag definition.
e thetagnameiswite.

¢ thetag handler classistags.jns. JnsW it eTag. This is the value of the t agcl ass
element and must be the fully qualified class name of the tag handler implementation.
» the tag has five attributes.
O destinationis a mandatory attribute.
O the other four attributes (message, ttl,priority, and persi stent) are
optional.
0 all the attributes can be JSP expressions of the form <% expressi on %,
since the value of the r t expr val ue element is true for all attributes.

We've already seen that the value of the dest i nat i on attribute is a valid jms protocol URL. This
attribute must be specified. The message that is to be sent/published can be specified in two
ways. The first way, which is also obvious from the above definition is via the message attribute.

For example,

<jnms:wite destination="jns://Queue/ Modi Queue" nessage="Hello World"/>

The other way to specify the message is via the tag body. For example,

<jns:wite destination="jns://Queue/ Modi Queue" >
Hello World
</jms:wite>

Note that in the latter case, | did not specify the nessage attribute. If | had specifed the nessage
attribute then the body would have been ignored. Why? Because that's the way I've coded the
handler for this tag. I'll discuss the code in a few moments.

As we already know, a sender/publisher has control over the delivery mode, the priority, and the
time—to-live of each message sent/published. The wr i t e tag allows the JSP developer to control
these values via the persi stent,priority,andttl attributes. For example, suppose the JSP
developer wants the message to expire in 60 seconds. This is achieved as follows.

<jns:wite destination="jns://Queue/ Mbdi Queue"
message="Hell o Worl d" ttl="60000"/>

or,

<jnms:write destination="jns://Queue/ Mbdi Queue" ttl="60000">
Hello World
</jms:wite>

As mentioned above, these attributes are optional and their default values are shown in Table 1.

Attribute Name | Default Value
persistent "true”

priority "o

ttl "0"

Table 1: Optional attributes and their defaults

Now, let’s take a look at the tag handler class for the wri t e tag. When the web server comes
across the wr i t e tag, this is the class that it will call to do all the work. A handler class must
implement the j avax. servl et . j sp. t agext. Tag interface. This is usually done by making the
handler extend either the j avax. servl et . j sp. t agext. TagSupport or

j avax. servl et.jsp.tagext.BodyTagSupport class. If the handler implementation needs to
manipulate the tag body (as in this case), it needs to extend the Body TagSupport class. After
creating a new instance (or reusing an old instance from a pool) of a handler class, the web server
informs the handler of all specified attributes. The handler class must follow the JavaBeans
standard of naming property modifiers i.e. for an attribute called dest i nat i on, the handler class
must have a set Dest i nati on method defined as follows:

public void setDestination(String destination);

Accordingly, our handler implementation defines a 'setter’ method for each attribute. The handler
also overrides the doAf t er Body method of the Body TagSupport base class. This method is
called by the web server when it is ready to process the body of the custom tag. Our
implementation of this method checks to see if a message was specified via the message attribute
and if so ignores the body. If no nessage attribute was specified then the body becomes the
message as shown below.

/1 Was a nessage specified via the nessage attribute?
i f(nmessage == null) {

/'l No.

/1l Get the body content

BodyCont ent body = get BodyContent ();

/1 Set the nessage equal to this content.

message = body. getString();

Now, the wr i t eMessage private method is called, which sends the message off to the specified
destination. The wr i t eMessage method implementation is similar to that of the Sender test
program in previous chapter, so I'll not discuss it here again. The doAf t er Body method returns
the SKI P_BQODY constant to inform the web server that the body has finished being processed.

Finally, the handler also overrides the r el ease method. This method is called by the web server
before reusing an instance of the handler class again. The r el ease method is responsible for
cleaning up this instance of the handler so that [the handler] can be used as if it were a brand new
instance.

The complete implementation is shown below.
package tags. | ns;
i mport javax.servlet.jsp.*;
i mport | avax.servlet.)sp.tagext.*;
i mport |ava.io.*;
i mport | ava. net.*;
public class JmsWiteTag extends BodyTagSupport {

private String destination = null;
private String nessage = null;

private String ttl ="0"; // live forever
private String priority = "9"; // highest priority
private String persistent = "true"; /'l persistent

public void setDestination(String destination) {
this.destination = destination;
}

public void set Message(String nmessage) {
thi s. nessage = nessage;

public void setTtl (String ttl) {
this.ttl = ttl

public void setPriority(String priority) {
this.priority = priority;

public void setPersistent(String persistent) {
this. persistent = persistent;

public int doAfter Bod?/() {
i f(nmessage == null) {
BodyCont ent body = get BodyContent ();
nmessage = body.getString();

writeMessage();
return(this. SKI P_BODY);

public void release() {
destination = null;
message = nul | ;
ttl = "0";
priority = "9";
persistent = "true";

}

private void witeMessage() {

try {
URL url = new URL(destination);

URLConnection uc = url.openConnection();
uc.setRequestPropertyg"persistent",persistent);
uc. set Request Property("ti neToLive",ttl);

uc. set Request Property("priority",priority);

Qut put St ream os = uc. get Qut put Stream() ;

Dat aCut put St ream dos =

new Dat aQut put St r ean(0s) ;

dos. writ eUTF(nessage) ;

dos. flush();

os. close();

}
catch(Exception e) %
) e.printStackTrace();

}
}

Theread Tag
The second tag, r ead, is for receiving messages from a destination. Its definition is shown

<t ag>
<nane>r ead</ name>
<t agcl ass>t ags. j ns. JnsReadTag</t agcl ass>
<i nf o>Recei ve a nessage</info>
<attribute>
<nane>desti nati on</ name>
<requi red>true</required>
<rtexprval ue>true</rtexprval ue>
</attribute>
</tag>

This definition is similar to the definition for the wr i t e tag except that it is much simpler. The
handler implementation for the r ead tag ist ags. j ms. JnsReadTag. It only has one mandatory
attribute, dest i nat i on. An example of using the read tag is shown below.

<jnms:read destination="jms://Qeue/ Modi Queue"/ >

Now let’s take a look at the tag handler implementation for the r ead tag. Once again, this handler

is very similar to that for the wr i t e tag, so | will only discuss the differences. Since the handler for
this tag does not need to manipulate the tag body, it extends the TagSupport class and overrides
the doSt ar t Tag method. The implementation of this method simply calls the private

r eadMessage method and prints the results to the page as shown below.

pageCont ext . get Qut (). print (readMessage());

The r eadMessage method implementation is similar to that of the Recei ver test program in the
previous chapter and so I'll not discuss it here again. The method returns the SKI P_BCODY
constant to inform the web server to skip the body of the tag.

The complete implementation is shown below for reference.
package tags. | Ims;
i nport javax.servlet.jsp.*;
i mport | avax.servlet.]sp.tagext.*;

i nport java.io.*;
i nport | ava.net.?*;

public class JnmsReadTag ext ends TagSupport {
private String destination = null;

public void setDestination(String destination) {
this. destination = destination;

}
public i?t doStartTag() f{
try
pageCont ext . get Qut (). print(readMessage());
catch(1 CException e)
e.printStackTrace();
/1 Skip tag body
) return(this. SKI P_BODY);

public void release() {
destination = null;

}
private {Stri ng readMessage() {
try
URL url = new URL(destination);
URLConnection uc = url.openConnection();
InputStreamis = url.openStrean();
Dat al nput Stream di s = new Dat al nput Strean(i s);
String nessage = dis.readUTF();
is.close();
) return(nessage) ;
catch(Exception e) %
e.printStackTrace();
return("");
}

Testing it Out

To use the custom JSP tags created in this chapter, you will need a web server that supports JSP
1.1. For the remainder of this chapter, | will use Tomcat 3.1. It is a great web server and the price
is right too!*’

Configuring Tomcat 3.1

Configuring Tomcat is easy once you figure out what to do *. In this section, | assume that you
have already installed Tomcat and it is working. To verify my assumption, execute the startup
batch file from a dos prompt, start your favorite browser, and point it to http://localhost:8080/. You
should see a welcome page as shown in figure 1.

2 Tomcat is available for free at http://jakarta.apache.org/tomcat/index.html under the Apache license and
is part of the Jakarta project. The goal of the Jakarta project isto provide commercial quality Java server
side solutions.

/) Tomcat v3.1 - Microsoft Internet Explorer

J File Edit “iew Favortes Toolz Help |
JAgdress|@ hitp: //localhost: G080 x| oo |JLinks

Tomcat

% Version 3.1
/& This the the defamlt Tomeat horee page. This page serves as a quick reference guide to related resorces and is located at:
- <i/path/to/toncat:/webpages/index.html

Included within this release are functional exaraples with associated sowrce code, API docwmentation for sexvlets and JSP, a READNME, a techrical FAQ
ot this release and an assortiment of jar files which are pre-requisites for continued deselopruent of web technologies incloding J5P and Servlets.

Exatnples:

. JSP les
« Servlet les

Docurnertation:

« APT docs for Servlet and JSP Packages

The BEADME file, which can be found at <fpathftoftormcat=/FESDIVIE, contains a list of known bugs, mcormpatibilities and Liritations.
¥ou can find more information gbout the Servlet and ISP technologies at:

- Sun's Java Server s Site
. Sun's Servlet Site =l

Figure 1: The Tomcat 3.1 Welcome page

Following are the changes/additions that we will make to the default configuration. At this point
stop Tomcat if it is running by running the shutdown batch file.

1. Create the following directories under TOMCAT_HOME. TOMCAT_HOME is the directory
where you installed Tomcat, which in my case is E:\jakarta—tomcat.
a. Create a directory called jmsbook under TOMCAT_HOME\webapps.
b. Create a directory called tags under jmsbook.
c. Create a directory called jms under tags.
d. Create a directory called Web-inf under jmsbook.
e. Create a directory called classes under Web-inf.

This directory structure is shown in figure 2.

2. Copy the tag handler source files, JImsWriteTag.java and JmsReadTag.java, to the
directory TOMCAT_HOME\webapps\imsbook\tags\jms.

3. Create a new text file in this directory (i.e. along with the source files) called JmsTags.tld.
This is the tag library definition file that contains the tag definitions discussed earlier. The
contents of this file are as follows.

<?xm version="1.0" encodi ng="1S0-8859-1" 7>

<! DOCTYPE
taglib
PUBLIC "—//Sun M crosystens, Inc.//DTD JSP Tag Library 1.1//EN'
"http://java.sun.com | 2ee/ dtds/ web—j sptaglibrary 1 1.dtd"

>

<I-— a tag library descriptor ——>

<tagli b>
<!- after this the default space is
"http://java.sun.com | 2ee/dtds/jsptaglibrary 1 2.dtd"
—-—>

<tlibversion>1.0</tlibversion>
<j spversi on>1. 1</ j spversi on>
<shor t nane>j ns</ shor t nane>
<uri></uri>
<i nf o>
Atag library for sinmplifying the use of JMS from JSP
</info>

<t ag>
<nanme>w i t e</ nane>
<tagcl ass>tags.jns. JnsWiteTag</tagcl ass>
<i nfo>Send/ Publ i sh a nmessage</i nf o>
<attri bute>
<name>dest i nati on</ name>
<requi red>t rue</requi red>
<rtexprval ue>true</rtexprval ue>
</attribute>
<attri bute>
<nane>nmessage</ name>
<requi red>f al se</requi red>
<rtexprval ue>true</rtexprval ue>
</attribute>
<attri bute>
<name>tt| </ name>
<requi red>f al se</required>
<rtexprval ue>true</rtexprval ue>
</attribute>
<attribute>
<nane>priority</ nane>
<requi red>f al se</required>
<rtexprval ue>true</rtexprval ue>
</attribute>
<attribute>
<name>per si st ent </ nane>
<requi red>f al se</required>
<rtexprval ue>true</rtexprval ue>
</attribute>
</ tag>

<t ag>
<name>r ead</ nane>
<t agcl ass>t ags. j ns. JnsReadTag</t agcl ass>
<i nfo>Recei ve a message</i nf o>
<attribute>
<nane>dest i nati on</ nanme>
<requi red>t rue</requi red>
<rtexprval ue>true</rtexprval ue>
</attribute>
</tag>

</taglib>

Add a new context "jmsbook" to the existing server.xml file in the TOMCAT_HOME\conf
directory. This is shown below.

<Cont ext pat h="/jnsbook" docBase="webapps/jnsbook"
debug="1" rel oadabl e="true" >

</ Cont ext >

Modify the tomcat batch file in the TOMCAT_HOME\bin directory. We need to change the
command line used to start the Java VM that hosts the Tomcat web server so that it can

find out IMS protocol handler. | discussed how to configure a VM for this in the previous
chapter. Add the following lines to the tomcat batch file just after the section in the batch
file where it sets up the classpath it requires (this is very near to the beginning of the batch
file).

rem khkkkhkkhkkhkkhkkhkkhkk*k Setup for Jn—BTagS khkkkhkhkkhkkhkhkkhkhkkhkhkk*

rem Set the URL protocol handler to use

rem Note that | am al so specifying a properties

remfile because | want to use Fiorano

set TOMCAT_OPTS= -Dj ava. prot ocol . handl er. pkgs=j nsbook
—-Dj nsbook. j ms. properti esFil esjnsUrl. properties

rem The path to my JM5 protocol classes.
set CLASSPATH=%CLASSPATHY E: \ dev\test\

rem Modi fy the classpath to include the

rem classes for Sun’s Java Message Queue and

rem Fi oranoMQ. W actually only need to include
remonly one of these, not both. For exanple
remin this case we only need Fiorano.

set CLASSPATH=%CLASSPATHY% E: \ Progr am

Fi | es\ JavaMessageQueuel. O\lib\jns.jar; E:\ Program
Fi | es\ JavaMessageQueuel. O\l i b\ nyg.|ar; E:\ Program
Fi | es\ JavaMessageQueuel. O\l i b\j ngadmi n. j ar

set CLASSPATH=%LASSPATHY E: \ Program

Fil es\ Fi orano\ Fi oranoMQ I ib\fnprtl.zip

rem khkkkhkkhkkhkkhkhkkhkkhkkk*x mne khkkkhkhkkhkhkkhkhkhkkhkhkkhkhkk*

[EN Exploring - E:\jakarta-tomcat\webapps\jmsbook

J File Edit Wiew Go Favorites Tools Help |

&

Back

g

Undo

. > 4| ¥ B @B

Farward Up Cut Copy Paste

AE

Delete Properties Wiews

-

J Address I[:I E:\jakarta-tomcatwebappshimsbook j

Folders

X

Mame I Sizel Type I M odified

5%‘ Data[E:) ;I [(tags File Fol... 9/26/00 10
-] Adobeapp (O webvin FileFol.. 7/19/00 2.
& Backups &]lindes himl KB Microso.. 7/13/00 301
B dev

-7 IBM-S04P1.2
{:l Inztallation Prograris
-] jRadkeel 2

EIC:I jakarta-tomcat

{:I bin
-] conf -
B doc

-1 lib

{:I logs

M- o

= webapps
B admin
{:l examples
=

B0 Webnf
B classes
& oot

{:I test

[]--{j wark - ‘I I

|2 object(s)

N

|1D4 bytes [Dizk free space: 3.18GE] |_g‘ ty Computer

Figure 2: The directory structure

6. Copy the jmsUrl.properties file to the TOMCAT_HOME\bin directory. This is the same
properties file that we used in the previous chapter to configure the JMS protocol handler
to work with FioranoMQ rather than the default, which is Sun’s Java Message Queue.

Compiling the Tag Handlers
To compile the handler classes execute the following command from a dos prompt.

javac -classpath E:\jakarta-tontat\classes\;E \jakarta—
toncat\lib\servliet.jar -d E: \jakarta-tontat\webapps\jnsbook\ WEB-
I NF\cl asses *.java

As | mentioned above, Tomcat is installed in the directory j akar t a—t oncat on my E drive. The
class path must include the servlet.jar file that contains all the servlet and jsp required classes.
Note that | am directing the compiler to send the compiled classes to the directory E: \ j akart a-
t oncat \ webapps\ j nsbook\ VEB-I NF\ cl asses. This is important because this is where
Tomcat will look for the tag handler classes when | point my browser to a JSP file that contains
custom tags.

The JSP file
Now let’s take a look at a sample JSP file (Test.jsp) that tests our custom tags. The HTML code
including the JSP code is shown below.

<! DOCTYPE HTML PUBLI C "—-//WBC//DTD HTML 4.0 Transitional//EN'>
<HTM_>

<HEAD>

<TI TLE>Testing JM5 Tags</ Tl TLE>

<I— Inportant: Reference the tag library definition —>
<U@taglib uri="JnsTags.tld" prefix="jns" %

</ HEAD>

<BODY>

<|-— Test the wite tag with the nessage attribute ——>

<jnms:write destination="jns://Queue/ Modi Queue" message="Hello World"/>

<! -—— Read the nmessage ——>
Getting the first nessage...
<jns:read destination="]ns://Qeuel/ Modi Queue"/ >

<l ——

Test the wite tag with the nmessage as the tag body

Al so, change the priority of the nessage fromits default

to "3" and the ttl from"0" to "60000". Leave the

persistent status to its default ("true").

-_—>

<pP>

<jns:wite destination="jns://Queue/ Mbdi Queue"
priority="3" ttl="60000">

This is a body test.

</jms:wite>

<! —— Read t he nessage ——>
Getting the second nessage.
<jns:read destination="jns: //QJeue/ Modi Queue"/ >

</ P>

<I-—— write with nessage as the attribute ——>

<jnms:write destination="jns://Queue/ Mbdi Queue" nessage="Hello Il1"/>
<! -

Read the nessage, but instead of displaying it on the page
store it as the "id" of the <P> tag.

To see if this worked, click view source when view ng the page
and | ook at the htm code. You should see a tag like:

<P id="Hello I'l" >

—-—>

Getting the third nmessage.

;Pl i d="<j ns:read destinati on=’ jms: /] Queue/ Modi Queue’ / >" >

ello

</ P>

</ BODY>
</ HTML>

The test HTML/JSP code is very straightforward, especially with the detailed explanations in the
comments, so | will skip most of the explanation. However, | would like to point out a key piece of
this code: the reference to the tag library definition file, ImsTags.tld. Without this, the web server
would have no way of knowing what to do with the custom tags, wri t e and r ead.

And Finally?

The moment we've been waiting for? actually seeing the custom tags in action. First, start Tomcat.
Now start your favorite browser and point it to the following URL
http://localhost:8080/imsbook/tags/ims/Test.jsp. You should see an output similar to figure 3. Also,
if you view the source HTML for that (Test.jsp) page in your browser, you should see HTML similar
to that in figure 4. Note that the last <P> tag has the id attribute with the value "Hello 11". Also look
at the output generated in the console window in which Tomcat is running. You'll recognize a lot of
this output from the previous chapter. This is because our custom tags build upon the work we did
in the previous chapter.

; Testing JMS Tags - Microzoft Internet Explorer
J File Edit “iew Fawvortes Toolz Help |

I S AN e BENE~ B
Back Emriand Stop Refresh Home Search Fawvorites History
JﬁddrESS @ http: #flocalhost: 30504msbook Aagsnsd T estjsp j & Go J Lirk.s

=
Fetting the first message . Hello World

Getting the second message . This i3 a body test.
Gething the third message...

hello

&] Done || [E5 Localintranet i

Figure 3: The Output from Test.jsp

a Test[1] - Hotepad M= &

File Edt Search Help

=IDOCTYPE HTML PUBLIC "-AWaCHDTD HTML 4.0 TransitionalfEM"=
=HTML=

=HEAD=

=TITLE=Testing JMS Tags=ITITLE=

=IHEAD=

| v

kBoDY=

Getting the first message...
Hella World

=P=

Getting the second message...
This is & hody test.

=P=

Getting the third message...
=P id="Hello [I" =

hella

=/P=

=fBO0Y =
=IHTML=

Figure 4: Test.jsp as delivered to the browser

Summary

Using JSP content developers can develop very powerful and dynamic web pages/applications.
However, when coupled with JIMS, JSP can become even more powerful. Using JMS from JSP
does not have be difficult either, because the architects of JSP have given us the power of
extending it with custom tags. As | mentioned at the beginning of this chapter, custom tags allow
the encapsulation of extremely complex and/or monotonous tasks into an easy to use tag (or set
of tags) syntax. JSP developers love this because it feels very natural to use these custom tags. In
this chapter | capitalized on the custom tag architecture of JSP to extend it with JIMS capability. In
addition, | leveraged the JMS protocol architecture developed in the previous chapter not only to
make the development of the custom tags much easier, but also to make them independent of any
JMS provider.

Chapter 11

Using JMS with EJB

Both JMS and EJB are key pieces of the J2EE platform, yet very little has been said/done to
support using these APIs together®®, apart from allowing the access of JMS resources from EJB
beans (or, EJBS). In this chapter, | will introduce an architecture for using JMS providers with
application servers that support EJB 1.1. This chapter assumes a working knowledge of EJB 1.1.

JMS can be used with EJB in at least two ways: 1) as a resource available to EJBs and 2) to work
around the synchronous nature of EJB 1.1. In this chapter, | will discuss both of these topics in
detail starting with using JMS as a resource from an EJB.

JMS as a Resource

Since JMS is a part of J2EE, it can be safely accessed from within your EJBs. In other words,
using JMS from within an EJB is really no different that using it from other Java applications.
However, it is important that you understand the lifecycle of the EJB that you are accessing JMS
resources from, since it is this lifecycle that helps determine the optimum way to obtain and
release the JMS resources i.e. connections, sessions, etc. For example,

e In an entity bean, you should create all your JMS resources in the ej bCr eat e method
and release all your JMS releases in the ej bRenmove method. No action needs to be
taken in the ej bAct i vat e and ej bPassi vat e methods (unless of course you want to
conserve your JMS resources).

* In a stateful session bean, you should create all your JMS resources in the ej bCr eat e
and ej bAct i vat e methods. These resources must be released in the ej bRenove and
ej bPassi vat e methods. Additionally, in the instance variables for the JMS resources
should be set to nul | in the ej bPassi vat e method as well. This requirement is
imposed by the EJB specification for any nontransient and nonserializable instance fields
in a stateful session bean.

* In a stateless session bean, you should create all your JMS resources in the ej bCr eat e
method and release all your JMS releases in the ej bRenpbve method. Since a stateless
session bean does not get activated and passivated like a stateful session bean does, no
action needs to be taken in the ej bAct i vat e and ej bPassi vat e methods.

These are actually the same rules that you would follow when using other resources such as
JDBC from your EJBs. So, nothing really new here either. More interesting however, is how JMS
transactions (refer to chapter 4 for a refresher) interact with EJB transactions. Let's take a look at
an example stateless session bean that uses JMS as a resource and also demonstrates the use of
JMS transactions from a typical EJB. The bean itself is very simple with just one method - buy -
that is accessible to clients. | have deployed the bean such that this method requires a transaction
and this transaction is managed by the container. Following are the noteworthy points of this
example:

1. Since this is a stateless session bean, all the JMS resources required by the bean are
initialized in the ej bCr eat e method as shown below.

public void ejbCreate() throws java.rm .RenoteException {
/1 Initialize the JMS resources

% Actually EJB 2.0 takes care of this. Commercial application servers that support EJB 2.0 are not available
as the time of thiswriting.

QueueConnecti onFactory connectionFactory =
get QueueConnecti onFactory();
i f(connectionFactory == null)
t hrow new Runti meExcepti on(
"Can not get the Queue Connection Factory");

try { .
connection =

connecti onFact ory. cr eat eQueueConnecti on();
sessi on = connecti on. creat eQueueSessi on(true, 1);
Queue queue = session. createQueue("inventory");
i nventory = session. creat eSender (queue) ;
gueue = session. createQueue("receivabl es");
recei vabl es= sessi on. creat eSender (queue) ;
connection.start();

Notice the call to the private method get QueueConnect i onFact or y to get the queue
connection factory. In this case the implementation assumes that Fiorano’s FioranoMQ is
being used. To make this bean JMS neutral you can either use the strategy pattern
discussed in chapter 8 or make the queue connection factory available in INDI. Also note
that | have created a transacted session by passing in at r ue value as the first parameter
to the cr eat eQueueSessi on method.

Also, since this is a stateless session bean all IMS resources are released in the
ej bRenove method as shown below.

public void ej bRenove() {

try {
/] Release all JMS resources

sessi on. cl ose();
connection. cl ose();

;:atch(JVBException e) {
}

Finally, let's look at the buy method itself. The buy method gets to paramters: the buyer
infromation and the order information. It is assumed that a client would call this method in
response to a user trying to buy a product/service from an e-commerce site. This method
starts by checking the order information by calling the veri f yOr der method. If the order
verification is successful, the buy method sends a message to the inventory queue. This
step is shown below:

First verify the order informtion

lean b = verifyOrder(order);

if the order is OK send a nessage to

tge i nventory queue.

Text Message nsg = session. creat eText Message() ;

nmeg. set Text ("This is the message to the inventory " +
"manager to decrenent the inventory count...");

i nventory. send(nsg);

Once this is done, the buy method checks the buyer information by calling the veri f yBuyer
method. If the buyer verification is successful, then a messages is sent to the receivables
gueue. This step is shown below:

/1 Now verify the buyer information

b = veri fyBuyer (buyer);

[4(iL ;t’s K then send a nessage to the receivabl es queue.

[
Text Message nsg = se
neg. set Text ("This is

"manager to ad

recei vabl es. send(msg

ssi on. cr eat eText Message() ;
the nessage to the recelvables " +
ust the receivables...");

i
)

If both the verifications are successful, then this method also instructs the JIMS session to
commit the current transaction as follows:

/1 Tell JM5 to conmit the transaction.
session.commt();

This causes the two messages (one to the inventory queue and one to the receivables queue)
to actually be sent. In other words, the session holds on to the messages unitil the transaction
is committed. This is because the session may be asked to rollback the transaction in which
case the messages must not be sent. In our case, if either one of the verifications fails, the
buy method throws an exception. This exception is caught by the buy method itself, which
then rolls back the current transaction on the session and on the bean as well. This is shown
below.

/1 got an exception
/1 there was some problenl
catch(Exception e) {
tr
Y [Tell JMS to rollback the transaction

/1 This neans that no nmessages "sent" within

/] this transactions will be sent.

sessi on. rol | back();

}
catch(JMSException el) {

/!l Rollback the EJB transaction
_context.setRol | backOnl y();

This brings up an interesting point. There are actually two transactions going on here. One
transaction is started by the EJB container and is the transaction within which the buy method is
being run. The other transaction is automatically started up by the JMS session as soon as the
first message is sent. These two transactions are independent of each other. That means
commiting or rolling back one transaction will not affect the other. Even if | used a bean-managed
transaction instead of a container managed transaction, which means that | would manually create
a transaction within the bean, | would still end up with two separate and independent transactions.
It would be nice if the JMS session accepted a transaction to work within instead of always
creating its own. For example, something like:

/'l create a new user transaction

Transaction tx = ?

[/ Tell the session to use this transaction
session. useTx(tx);

/1l send a few nessages?

// Commit or roll back tx
// This would affect both the EJB and JNMS

But, you cannot do this right now; no harm in wishful thinking though. The complete source for our
stateless session bean is shown below.

/1 The Bean inplenmentation
i mport javax.jms.*;

public class BuyBean inplenents javax.ejb. SessionBean {
private javax.ejb. SessionContext _context = null;

/1 the JMS resources that we will need to
/1 hold on to.

private QueueConnection connection = null;
private QueueSessi on session = null
private QueueSender inventory = null
private QueueSender receivables = null

public void set Sessi onCont ext (.
javax. ej b. Sessi onCont ext sessi onContext) {
_context = sessi onCont ext;

public void ejbCreate() throws java.rmn .RenoteException {

/1 Initialize the JM5 resources
QueueConnecti onFactory connectionFactory =
getheuernnectionFactorY(g;
i f(connectionFactory == nul
t hrow new Runti neExcepti on(
"Can not get the Queue Connection Factory");

try {
connection = connecti onFactory. creat eQueueConnection();

sessi on = connection. creat eQueueSessi on(true, 1);
Queue queue = session.createQueue("inventory");
i nventory = session. creat eSender (queue);

gueue = session. creat eQueue("recei vabl es");
recei vabl es= sessi on. creat eSender (queue) ;
connection.start();

}
catch(JMSException e) {
i f(e.getLinkedException() !'= null)
t hrow new Runti neExcepti on(
e. get Li nkedExcept 1 on() . get Message());

el se
t hrow new Runti meException(e. get Message());
}
}
public void ej bRenpve() ({
try
/| Rel ease all JMs resources
session. cl ose();
) connection. cl ose();
catch(JMSException e) {
}

public void ejbActivate() {

}

public void ejbPassivate() {

publ i c bool ean buy(Buyerlnfo buyer, Orderlnfo order)
throws java.rm . Renot eException

}

/1 First verify the order information
try {

bool ean b = verifyOr-der(order);
; the order is OK, send a nessage to
i

I
i .
the inventory queue.

—~~-0
oS0
~

(

Text Message nsg = sessi on. creat eText Message() ;
neg. set Text ("This is the nessage to the inventory

"manager to decrenent the inventory count..
i nventory. send(nsgq);

/ otherw se just throw an exception
/[why..., you'll see
| se

t hrow new Exception();

~

rify the buyer information
yBuyer (buyer);
S

(

ve
if
£

-~~~ - O~~~

—_ ~

W

ver

ifoi

b) { .

Text Message neg = sessi on. creat eText Message() ;

nmsg. set Text ("This is the nessage to the receivabl es
"manager to adjust the receivables...");

recei vabl es. send(nsg) ;

/1 otherwi se just throw an exception
[l why..., you'll see.

t hrow new Exception();
/1 Tell JM5 to commit the transaction
session.commit();
/1 Buy conpl eted..

return(true);

/ there was sone probl em
atch(Exception e) {
try

}
5/ got an exception
c

[Tell JVMS to rollback the transaction

/1 This neans that no nessages "sent" within
/!l this transactions will be sent.
session. rol | back();

}
catch(JMSException el) {

/'l Rollback the EJB transaction
_context.setRoll backOnly();

/1 Buy fail ed.

return(fal se);

/1 Get the queue connection factory
/1l This code is specific to Fiorano.
private QueueConnecti onFactory get QuieueConnecti onFactory() {

try {

K then send a nessage to the receivabl es queue.

fiorano.jnms.rtl.Fioranolnitial Context ic = null
ic = new fiorano.jns.rtl.Fioranolnitial Context();
i c.bind();

QueueConnectionFactory factory =

(QueueConnecti onFactory)ic. | ookup("primryqcf");
i c.dispose();

return(factory);

}
catch(JMSException e) {
i f(e.getLinkedException() !'= null)
t hrow new Runti neExcepti on(
| e. get Li nkedExcept 1 on() . get Message());
el se
t hrow new Runti meException(e. get Message());

}

I/ verification fails for "John Doe"
/1 no hard feelings M. Doe :)
private bool ean verifyBuyer(Buyerlnfo buyer) {
i f(buyer.nane. equal sl gnoreCase("John Doe"))
return(fal se);
el se
return(true);

}

/1 verification fails for itenNunbers |ess than 0
/1 or greater than 1000 or if the qty is less than O.
private bool ean verifyOrder(Orderinfo order) {
if(order.itemNunber < O || order.itemNunber > 1000
|| order.qgqty < 0)
return(false);
el se
return(true);

}

To test this out, assume that a client executes the following.

// Assunme that "honme" is a valid reference
// to the honme for this bean

/'l Get the bean.

Buy buyer = home.create();

/1 First call
Buyer I nfo buyerlnfo = new BuyerlInfo("Tarak Mdi");
/1 Orderlnfo takes an item nunber and quantity
Orderlnfo orderinfo = neM/C)derInfo(501,10;

bool ean b = buyer. buy(buyerlInfo, orderinfo

/1 Second cal
buyerinfo = new Buyerlnfog"John Doe") ;

orderlnfo = new Orderlnfo(501, 10);
b = buyer. buy(buyerlnfo, orderlnfo);

[/ Third call

buyerinfo = new Buyerlnfog"Tarak Modi ") ;
orderlnfo = new Orderlnfo(1501, 18);

b = buyer. buy(buyerlnfo, orderlnfo);

In the above code snippet, only the first call will succeed i.e. return a t r ue value®. As a result
both the inventory and receivables queues will only contain one message each. This is because
whenever the buy method fails, it rolls back the JMS session transaction, which causes the JMS
session to discard any messages sent within that transaction instead of actually sending them.

Now, let's take a look at how JMS can be used as more than just a [powerful] resource in
conjunction with EJB. More specifically, | would like to present an architecture that allows clients to
access EJBs asynchronously.

Asynchronous EJB

Communication with and/or between EJBs is a synchronous process, with the caller blocking till
the call is completed. But, there are many situations when such blocking is not desirable. For
example, consider an EJB that provides a backup service. The backup may take a long time,
possibly several hours. It seems silly that the caller has to block for all this time sicne the backup
could be done in the background (i.e. asynchronously), thus allowing the client to do other things.
That is where JMS fits into the picture.

The "Wrong" Architecture

Let's continue with the example of an EJB that provides a backup service: the Backup Server. For
now, let's assume this is implemented as a Stateless Session bean. The home and remote
intefraces for this bean are defined below:

/1 The hone interface.
public interface BackupHone extends javax.ejb. EJBHone {
Backup create()
throws java.rm . RenoteException, javax.ejb.CreateException;

}

/1 The Bean specific interface.
public interface Backup extends javax.ejb. EJBObject {
public void backup() throws java.rm . Renot eExcepti on;

A typical stateless session bean is defined below:

/1 The Bean i npl enentation.
public class BackupBean inplenents javax.ejb. SessionBean {
private javax.e]b. Sessi onCont ext _context;

public void set Sessi onCont ext (_
javax. ej b. Sessi onCont ext sessi onContext) {
_context = sessi onCont ext;

ublic void ejbCreate() throws java.rni.RenoteException {
ublic void ej bRemove() {
ublic void ejbActivate() {

ublic void ejbPassivate() {

public void backup()throws java.rm .RenoteException {
/1 Conpl ex Backup 1 ogic.

» The second call fails because of the buyer’s name and the third call fails bacause of an invalid item
number.

/1 Takes a very long tine.
}

Now let’s use JMS to make the actual backup operation asynchronous. We can't just spawn a
thread from the backup method because EJBs are not allowed to do so. That is, the following is
illegal:

/1 1Illegal Code snippet
public void backup()throws java.rm .RenoteException {
new BackupThread().start();

/1 The backup thread
private class BackupThread extends Thread {
public void run() {
/1 Conpl ex BackuIJ | ogi c.
/1l Takes a very long tine.

}
}

The intuitive way to use JMS from our backup EJB is to package up the backup request into a
JMS message and send this message to well-known destination. The stateless session bean
would have also registered itself as an asynchronous message listener with that well-known
destination and so at some point the JMS provider will invoke the onMessage method on the
bean. Coding this would be very easy as shown below.

/1 The Bean inplementation with JM5 — The WRONG way!
i mport javax.jms.*;
public class BackupBean
i mpl enent s j avax. ej b. Sessi onBean, Messageli st ener {

private javax.ejb. Sessi onContext _context;

public void set Sessi onCont ext (_
javax. ej b. Sessi onCont ext sessi onContext) {
_context = sessionContext;

public void ejbCreate() throws java.rn .RenoteException {
/1l Register this class as a nmessage |istener
/1 for the well-known destination.

}

public void ejbRemove() {
/1 Unregister this class as a message |istener

?ubl ic void ejbActivate() {
public void ejbPassivate() {

public void backup()throws java.rm .RenoteException {
/1 Send a nessage indicating
/1 that a backup is required
[l i.e. schedul e a backup
/1 No backup is performed here

This method is called by the JMS provider.
The message received here is the same
message that the "backup"” nethod sent

~——
~— —

/1 to the provider.

public void onMessage(Message m {
/1l Conpl ex Backup | ogic.
/1 Takes a very long tine.

}
}

Simple enough, but please do not do this! We have just violated a major rule of EJB: a bean must
never be accessed directly, but only through its remote interface. In the above architecture, IMS
bypasses the container and directly invokes the onMessage method on the bean. A couple of
problems (out of many) that could arise are:
1. The bean could already be in use by the container. Remember, stateless session beans
are not thread-safe.
2. The bean could be in a "pooled" state.

So how do you [correctly and legally] use JMS with EJB. That is the topic of the next section.

A "Correct" Alternative Architecture

An accepted solution to this dilemna is to use a delegation model based architecture. Figure 1
shows the proposed architecture. There are several key differences from the previous
architecture.

1. The client does not directly interact with the Backup EJB. Instead it sends a message to
the well-known destination.

2. A new "daemon" known as the AsyncDelegator has been intrroduced. This process
receives messages from the destination.

3. The AsyncDelegator invokes the appropriate method on the backup bean. It does this via
the remote interface via the container. This architecture places a new requirement on
EJBs in that their remote interface must contain the following two methods required by the
AsyncDelegator. These methods are shown below as part of the new interface for the
Backup bean.

/1 The Bean specific interface.
public interface Backup extends javax.ejb. EJBObject {
/1 Al "Async" beans MUST define these two nethods
public void onMessage(String soapXm)
t hrows java.rm . Renot eExcepti on;
public void invokeService(java.util.Myp map)
t hrows java.rm . Renot eExcepti on;

}

I will be using the Inprise Application Server. There is one line of code in AsyncDelegator that
is Inprise specific. | will point this out during the discussion.

Backup
Bean

EJB Container

4. Farward the
call to the bean

JMS Provider

destination

.

Backup
Besan Stub

3. Make a
synchronous
| call to the stub

2. Deliver the
message to

1. Send a AsyncDelegstar

Message

AsyncDelegatar

Eackup Client J

Figure 1: The proposed architecture for using JMS with EJB

The AsyncDelegator
This is a central piece in the proposed architecture, so let’s take a detailed look at it.
AsyncDel egat or has two primary (and related) responsibilities.

1. To receive messages from well-known destinations.

2. Toinvoke the appropriate method (onMessage or i nvokeSer vi ce) on the appropriate
beans in response to receiving a message.

To receive messages from JMS destinations, AsyncDel egat or must interface with a IMS
provider that will be used by the client as well (see figure 1). In my implementation | am using
Sun’s Java Message Queue for simplicity. However, as I've shown in chapters 8 and 9, it is very
easy to break this dependency. | leave this as an exercise for you.

AsyncDel egat or knows which bean to invoke the method on for each well known destination
from a properties file which is a required argument for startup. This properties file specifies a
mapping between destinations and EJBs. Each property name is actually the name of a valid IMS
queue. The value of each property is a comma delimited string of home name and fully qualified
home classname pairs. The home name and home class name are separated by a ’|'. Following is
the properties file that | am using.

del egator. properties
BackupQueue=backup| BackupHormne

Here the queue name is "BackupQueue". Also, this properties file informs AsyncDel egat or that
whenever a message arrives on this queue, it should invoke the appropriate method on an EJB
whose home name is "backup". The home class returned by the container corresponding to the
name "backup" will be of type "BackupHome".

For each destination (i.e. queue) in the properties file, AsyncDel egat or creates an instance of
AsyncThr ead. This thread receives the name of the queue and a list of host name and host
classname pairs as its constructor parameters. This is shown below.

/'l For each property, create a thread that receives

/1l messages on the queue and forwards each nessage
/]l to a bean obtained fromeach hone specified
String destination = (String)enum nextEl enent ();
String hones = props. getProperty(destination);

i f(homes.equal s("")

conti nue;
Li nkedLi st honeLi st = new Li nkedLi st ();
StringTokeni zer st = new StringTokeni zer (hones,",");

whi | e(st. hasMreTokens() {
) honelLi st. add(st . next Token());

/'l Create a new thread?
AsyncThread t = new AsyncThread(destinati on, honeList);

Each instance of AsyncThr ead waits for messages from the specified destination i.e. listens for
messages as shown below.

Message m = receiver.recei ve(1000);

From now on, | will refer to these threads as listener threads.

Creating the EJB

When a message is received, the listener thread must invoke the appropriate method on each
bean specified in the properties file. But before it can invoke the method on a bean, it must create
the bean. This is shown below.

/1 For each specfied honme, get an EJB and
/1 invoke the "appropriate" mnethod.
for(int i=0; i<honelList.si ze(%; i++) {
String honeltem = (String)honeList.get(i);
String honeName =
honel t em substring(0, honeltem i ndexOf ("] "));
String honed assnanme =
honel t em substring(honmeltem i ndexOf ("] ") +1);

System out . printl n("Forwardi ng nessage to " +
honeNane + "of class type " + homed assnane);

/1 Some AppServers may require additional

/1 configuration for the Initial context.

j avax. nam ng. Cont ext context = new
javax. nam ng. I nitial Context();

bj ect ref = context.| ookup(honeNane);
Cl ass honmeC ass = Cl ass. f or Nane(honmeCl assnane) ;

[l This is required for Inprise AppServer since
/] it uses RM-I10OP as its transport protocol.
bj ect hone =
javax. rm . Port abl eRenpt ebj ect. narrow(r ef , homed ass) ;

I/ Get the create nethod
Met hod met hodCreate = honmed ass. get Met hod(" create”,
new O ass[]{});

/1l Finally, we have the bean!
bj ect ejb = nethodCreate.invoke(hone, new Object[]{});

In the above code snippet, there is one line of code that is Inprise specific. Once | obtain a stub to
the home object, | "narrow"” (i.e. cast) it to the correct class as shown below.

[l This is required for Inprise AppServer since
/] it uses RM-110OP as its transport protocol.
bj ect hone = javax.rm . Portabl eRenpot elbj ect. narrow(ref, honed ass);

Actually, this is not really Inprise specific, but is required by any application server that uses RMI-
IIOP as the transport protocol for EJB. To break this dependency, we can use a similar strategy as
we did for breaking the dependency on any specific JMS provider. Make AsyncDel egat or
configurable so that it relies on an external helper class to get the home object. This external
helper class may contain application server specific code.

Once, we have the home object, we can invoke the cr eat e method on it. Notice that | look for the
cr eat e method with no parameters. The reason behind this is that | assume that stateless
session beans will be used to provide the asynchronous services, since they the most ideal for this
purpose. Stateless session beans are dedicated to a client only for the life of a method call and
they do not contain/hold any client specific state. Plus they are the most efficiently pooled bean. All
these characteristics make stateless session beans ideal for providing asynchronous services.

Invoking the method

Until now, I've been saying "invoke the appropriate method on the bean." So what is the
appropriate method? It depends on the type of the message received. If the message is a
Text Message then the onMessage method is invoked passing the string contents of the
message as the parameter to the method as shown below.

/] Text Message nmeans get the containing text
/1 and invoke the "onMessage" nethod on the EJB.
i f(minstanceof TextMessage) {
Met hod met hodOnMessage =
ej b. get C ass() . get Met hod(" onMessage", new
Cass[]{String.class});

I/l Create a new "invoker" thread to

/] actually invoke the method.

Thread t = new | nvoker Thr ead(net hodOnMessage, ej b,
new Cbject[]{((Text Message)m.getText()});

If on the other hand the message is a MapMessage then the i nvokeSer vi ce method is called.
This method is passed an instance of a Map that mirrors the body of the MapMessage, with the
exception that primitives in the message are "objectified" in the map. For example, an i nt in the
message is objectified into an | nt eger in the map.

/1 MapMessage neans create a Map that mirrors
/1l the nessage and invoke the "I nvokeService"
/1 nmethod on the EJB.
el se if(minstanceof MapMessage) {
MapMessage mapMsg = (MapMessage) m
HashMap map = new HashMap();
Enuner ati on mapNanes = mapMsg. get MapNanes() ;
whi | e(mapNames. hasMor eEl emrent s()
String nanme = (String)mpNanes. next El enent () ;
map. put (nane, mapMsg. get Qbj ect (nane)) ;

Met hod net hodl nvokeService =
ej b.getd ass(% . get Met hod("i nvokeServi ce",
new Cl ass|[]{Map. cl ass});

I/ Create a new "invoker" thread to
/] actually invoke the method.
Thread t = new I nvoker Thr ead(net hodl nvokeSer vi ce, ej b,

new Obj ect[]{map}):

You will notice that instead of invoking the [onMessage or i nvokeSer vi ce] method directly from
the listener thread, | create another thread that | call the invoker thread, which is an instance of the
class | nvoker Thr ead. The reason behind this is that the method may take a long time to finish
and | do not want my listener thread to block for all that time. For example, a backup may take
several hours. Instead, the listener thread creates a new thread that actually invokes the method
and blocks, while the listener thread is free to listen for other messages. This design pattern is
similar to the one used by stream (TCP) socket programmers, where there is a separate socket
the listens/waits for client connections and for each client connection received, the listener socket
creates a new socket that actually communicates with the client.

Shutting down the AsyncDelegator
AsyncDel egat or creates an instance of the class St opThr ead. This thread monitors the
standard input (i.e. keyboard) for a "q" followed by return key. When this sequence of keystrokes
is received, this thread calls the shut down method, which is responsible for ensuring a clean
shutdown. To ensure a clean shutdown, the shut down method needs cooperation from the rest of
the AsyncDel egat or code in two ways.
1. Whenever a new thread is created it must be added to the t hr eads list. All access to the
t hr eads list must be synchronized. The code snippet illustrates how the listener thread
creates a new invoker thread.

/1l Create a new "invoker" thread to
/1 actually invoke the nethod.
Thread t = new | nvokerThreadErret hodOnMessage, ej b,
new Cbj ect[]{((Text Message)m.getText()});
/!l Add it to the threads l1st?
synchroni zed(t hreads) {
t hr eads. add(t);

}
// and then start the thread.
t.start();

2. Just before a thread terminates itself, it must remove itself from and then call not i fy on
the t hr eads list. Once again, accessing the t hr eads list must be synchronized.
Synchronization here is not just for thread safety but also to ensure that the Java runtime
allows the not i f y method to be called. Also, a thread is responsible for cleaning up all
allocated resources, which it does before removing itself from the t hr eads list. For
example, the following code snippet illustrates how a listener thread terminates.

try
/} perform cl eanup.
if(receiver '=null) {
recei ver. close();
session. cl ose();

catch(Exception e)
e.printStackTrace();

/'l Rermove nyself fromthe threads |ist
/1 and call notify.
synchroni zed(t hreads) {

/'l This thread is done...

threads.r errovegt hi s);

threads. notify();

}

The shut down method also needs each listener thread to periodically call the r unni ng method
and if this method returns a f al se value, the listener thread must terminate itself in the way
specifiied in (2) above.

Now let’s look at the shut down method. It proceeds in three steps:
1. Setthe _shutdown flag to true as shown below.
synchroni zed(_shut down) {
} _shutdown = new Bool ean(true);
This is the flag that the r unni ng method uses to determine if the AsyncDelegator is

shutting down, as shown below.

private static boolean running() {
/1 1f we’ve been told to shutdown, return a fal se val ue.
synchr oni zed(_shut down)
return(! _shutdown. bool eanVal ue());

}
2. Now wait for all the threads to terminate as shown below

/1 Now wait for all the threads to end.
;/ There are two types of threads

/ 1. The "listener” threads to receive nessages from queues.
/1 2. The "invoker" threads that actually invoke methods
/] on EJBs.

synchroni zed(t hreads) {
whi | e(!}hreads. IseEmpty()) {
try
threads.wait();

;:atch(Exception e) {

}
3. Finally, close the JMS connection as shown below.

/] Close the JM5 connecti on.

try { .
connection. cl ose();

}
catch(Exception e) {
e.printStackTrace();

The complete implementation of the AsyncDel egat or is shown below.

i nport java.
i mport | ava.
i mport | ava.

io.Fil
io. Fil eI nput St r eam
util.Properties;
import Java.util.
util.
u | .

i
i|.LinkedList;
import java.util.Stri ngTokenl zer;
i mport | ava.util.HashMap;
i mport |ava.uti
i

| . Map;
i mport |ava.util.Enuneration;
i mport | ava.l ang.refl ect. Met hod;

i nport javax.
i mport | avax.
i mport | avax.
i mport | avax.
i mport | avax.
i mport | avax.
i mport | avax.
i mport | avax.

i nport | avax.
i nport | avax.

public class
private
private
private

public s
if(

try

. Text Message;
. Message;
. MapMessage,;
. Queue;
. QueueConnecti on;
. QueueConnecti onFactory;
. QueueRecei ver;
. QueueSessi on;
. EJBHone;
m . PortabIeRenoterject

S FFEEEEE

o

ej
r

AsyncDel egat or {

static QueueConnection connection = null
static Bool ean _shutdown = new Bool ean(fal se);
static LinkedList threads = new LinkedList();

tatic void main(String[] args) {

args.length '=1 || 'new File(args[0]).exists()) {

Systen1err.ﬁrintln("The del egat or takes one paraneter," +
" whichis avalid properties file nanme.");

System exit(0);

5/ | oad the properties fromthe file
Properties props = new Properties();
props. | oad(new Fil el nput Strean(args[0]));

/1 Get the queue connection factory.

/1 This is the only "Sun Java Message Queue" specific code.
QueueConnecti onFactory connectionFactory =

new com sun. nessagi ng. QueueConnecti onFactory();

/1l Use the factory to create the queue connecti on.
connection = connectionFactory. creat eQueueConnection();
connection.start();

/1 Enunerate the properties.
/1 Each property nane is the nane of a queue to recieve
/1l messages on. The val ue of each property is a
/1 comma-delimted string of pairs of hone nanes
/1 and home cl assnanes.
/1 The home nanme and the cl assnane are separated by a "|"
/'l For exanple, a valid property could be:
/1 BackupQueue=BackupSer ver 1| BackupHone,
[BackupSer ver 2| BackupHore,
/1 Fast BackupSer ver | Fast BackupHone
/1 Using such a property file it 1s possible to set up a
/1 many to nmany rel ationship between queues and EJBs.
&gv? util.Enumeration enum = props. keys();

i

e(enum hasMoreEl enents())

/'l For each property, create a thread that receives
/1 nmessages on the queue and forwards each nmessage
/!l to a bean obtained fromeach hone specified
String destination = (String)enum nextEl ement () ;
String hones = props. getProperty(destination);

i f(homes.equal s("")

conti nue;
Li nkedLi st honeLi st = new Li nkedLi st ();
StringTokeni zer st = new StringTokeni zer (hones,",");

whi | e(st.hashMreTokens()) {
) honelLi st. add(st . next Token());

/]l Create a new thread and renenber it

AsyncThread t = new AsyncThread(destinati on, honeList);
/1 Don't need to synchronize access to "threads" yet.
/1 W will need to |later.

t hreads. add(t);
t.start();

}
catch(Exception e) %
e.printStackTrace();

shut down() ;
}
[l This thread will hang around till a user presses
/1 q followed by a return. At that point this thread
/1 will tell the delegator to shutdown.

new StopThread().start();

Systenlout.printlng"AsyncDelegator is Ready.");

Systemout.println("Press g<enter> at any point " +
"to quit program");

}

private static bool ean running()
/1 1f we’ve been told to shutdown, return a fal se val ue.
synchr oni zed(_shut down)
return(!_shut down. bool eanVal ue());

}

private static void shutdown() {
/1 The del egator nust shut down now.

/1 Make it so..
synchroni zed(_shut down) {
_shutdown = new Bool ean(true);

}
/1 Now wait for all the threads to end.
/1l There are two types of threads
/1 1. The "listener" threads to receive nessages fron13ueues.
55 2. E?% "invoker" threads that actually invoke nethods
on S.

synchroni zed(t hreads) {
whi | e(!Ehreads.isEnpty()) {
try
threads.wait();

%atch(Exception e) {

}
}
/'l Close the JM5 connection
try {

connection. cl ose();

}
catch(Exception e) %
e.printStackTrace();

}

[l This is the "listener" thread that receives nessages
/1 froma queue
private static class AsyncThread extends Thread {

/1 which queue?

private String destination

/1 Alist of hone nane and cl assnane pairs.

private LinkedList homeList = null

public AsyncThread(String destination, LinkedList honeList) {
super (desti nati on);
thi s.destination = destination

t hi s. honeLi st = honelLi st ;

public void run() {
Systemout.println("Thread " + this.getName() +
" started.");

QueueSessi on session = null;
QueueRecei ver receiver = null;

try
5/ JMS setup work. ..
session = connection. creat eQueueSessi on(fal se, 1);
Queue queue = session. createQueue(destination);
recei ver = session. createReceiver(queue);
/1 Continue till asked to stop.
whi | e(AsyncDel egator.running()) {
[/ wait for a message.
Message m = recei ver. recei ve(1000);
if(m==null)
conti nue;

System out. println("Received a Message");

/1 For each specfied home, get an EJB and

/1 invoke the "appropriate" method.

for(int i=0; i<honelList.si ze(?1 i ++
String honeltem = (String)honeLi st get(|)
String honeName =
honel t em substring(0, honeltem i ndexOf ("] "));
String honed assname =
honel t em substring(honmeltem i ndexOF ("] ") +1);

System out . printl n("Forwardi ng nessage to " +
honeNane + "of class type " +
honed assnane) ;

/1 Some AppServers nay require additional
/1 configuration for the Initial context.
j avax. nam ng. Cont ext context =

new j avax. nam ng. I nitial Context();

bj ect ref = context. | ookup(honeNane);

Cl ass honmeCl ass = C ass. f or Nane(honmeCl assnane) ;

[l This is required for Inprise AppServer since
/[l it uses RM-II1OP as its transport protocol.
bj ect hone =
javax. rm . Portabl eRenpt ehj ect. narrow(ref,
honed ass) ;

Met hod met hodCreate =
honed ass. get Met hod("create", new O ass[]{});
bj ect ejb = net hodCreate. i nvoke(hone,

new Cbject[]{});

/] Text Message nmeans get the containing text

/1 and invoke the "onMessage" method

//on the EJB.

i f(minstanceof TextMessage) {

Met hod nmet hodOnMessage =

ej b. get A ass(). get Met hod(" onMessage”,
new C ass[]{String.class});

/[l Create a new "invoker" thread to

/1 actually invoke the nethod.

Thread t =

new | nvoker Thr ead(net hodOnMessage, ej b,

}

/1
/1t
/1
el

}

new Object[]{((Text Message)m.getText()});
synchroni zed(t hreads) {
t hreads. add(t);

}
t.start();

MapMessage nmeans create a Map that mirrors

he nessage and i nvoke the "I nvokeService"

nmet hod on the EJB.
se if(minstanceof MapMessage) {

MapMessage mapMsg = (MapMessage) m
HashMap map = new HashMap();
Enuner ati on mapNanes =
mapMsg. get MapNanes() ;
whi | e(mapNanes. hashor eEl emrents()) {
String nanme =
(String) mapNanes. next El ement () ;
map. put (nane, mapMsg. get Gbj ect (nane)) ;

Met hod met hodl nvokeServi ce =
ej b. get A ass() . get Met hod("i nvokeServi ce",
new C ass[]{Mp. cl ass});
I/ Create a new "invoker" thread to
/] actually invoke the method.
Thread t =
new | nvoker Thr ead(net hodl nvokeSer vi ce, ej b,
new Qbj ect[]{map});
synchroni zed(t hreads) {
t hreads. add(t);

}
t.start();

catch(Exception e) {
Systemout. println("Exception in thread: " +
Thr ead. current Thread() . get Name()) ;
e.printStackTrace();

try {
/1 cl eanup.
i f(receiver
recei ver
sessi on.

= null) {
.close();
cl ose();

}
catch(Exception e)
e.printStackTrace();

}

synchroni zed(t hr

eads) {

I/ This thread is done...
t hr eads. rerrovegthi s);

t hr eads. not i

System out. pri nt

}

fy();

In("Thread " + this.getNane() + " done.");

/1 The "shutdown" t hread.
private static class StopThread extends Thread {

public void run() {
try {

[l Wit for

while(true

the user to enter <g> followed by a return.

) |

int character = Systemin.read();
if(character != -1 && character == 113) {
synchroni zed(this) {
Systemout. println("Preparing for
shut down. ") ;
/1 shutdown. ..
AsyncDel egat or . shut down() ;
System out. printl n(" Shutdown conplete.");
return;

}
}
J ava. |l ang. Thread. sl eep(1000);

catch(Exception e)
e.printStackTrace();

}

/1 The "invoker" thread.

private static class |InvokerThread extends Thread {
private Method net hod;
private bject target;
private ohject[] args;

/1 setup paraneters in constructor
public I nvoker Thread(Met hod net hod, Object target,
bj ect[] args) {
this. met hod = net hod;
this.target = target;
this.args = args;

}

// invoke the nethod
public void run() {

try {
Systemout. println("Invoker Thread is invoking nmethod "

+ nmet hod. get Nanme()) ;
nmet hod. i nvoke(t arget, args);

}
catch(Exception e) %
e.printStackTrace();

finally {
synchroni zed(t hreads) {
/1l This thread is done.
t hreads. renove(this);
threads. notify();

}

The Architecture in action

| assume that you have Inprise Application server and Sun’s Java Message Queue installed and
working. | have installed both of these products in my E:\Program Files\" directory.

The Backup EJB

The Backup EJB is a stateless session bean as before and it provides the implementation for the
two methods in the Backup remote interface. The implementation of the onMessage method is
very straightforward; it simply prints the text string to standard out. In reality this message could be
fairly complex, such as a SOAP packet.

The i nvokeSer vi ce method implementation is more interesting. It gets a parameter of type
java.util. Map, which contains the following key information:
» The name of the service to invoke. In our case, the only valid service is "backup". The
name of the service is completely arbitrary, but documented.
* Any parameters if necessary. The parameters are identified by name and depend on the
name of the service. For example, the "backup” service requires a "days" parameter that
determines which files get backed up.

The complete implementation of the Backup bean is shown below. Notice that the bean is
completely unaware of JMS.

/1 The Bean i npl enentation.
/1 Notice that it has no know edge of JMS

public class BackupBean inpl ements javax.ejb. Sessi onBean {
private javax.e|b. SessionContext _context;

public void set Sessi onCont ext (.
j avax. ej b. Sessi onCont ext sessi onContext) {
_context = sessionCont ext;

}
?ubl ic void ejbCreate() throws java.rm .RenoteException {
?ubl ic void ej bRemove() {

public void ejbActivate() {
public void ejbPassivate() {

/1 One of the mandatory nethods that nust be inplenented.
public void onMessage(String soapXm)
throws java.rm . RenoteException {

try {
Systemout.println("Got a nessage " + soapXm);

}
catch(Exception e) {
) e.printStackTrace();

}

/1 The other mandatory net hod
public void invokeService(java.util.Myp map)
‘ throws java.rm . Renot eException {
try
/1 \What is the requested service?
String service = (String)nmap.get("service");
System out. println("lnvoking service: " + service);

/1 Does the client want a backup?
i f(service.equal s("backup")) {
/1 The paraneter
int days = ((Integer)map. get("days")).intValue();
/1 and the call?
per f or mBackup(days) ;

el se
Systemerr.println("lnvalid service nane.");

catch(Exception e) {

e.printStackTrace();
}

/1 This is where the backup | ogic would reside.
private goid per f or mBackup(i nt howrar Backl nDays) {
try
Systemout. println("Backing up all files that have" +
" atinmestanp in the last " +
howFar Backl nDays + " days.");
Thr ead. sl eep(5000);
System out. println("Backup Conplete.");

}
catch(Exception e) %
e.printStackTrace();

}
}

The Deployment Descriptor

I have included the deployment descriptor that | used to deploy the bean as shown below. Once
again, this is a standard descriptor for deploying a stateless session bean and is in way tainted by
JMS.

<?xm version="1.0"7?>

<! DOCTYPE ej b—-jar PUBLIC "-//Sun M crosystens, Inc.//DID Enterprise
JavaBeans 1.1//EN' "http://java.sun.conlj2ee/dtds/ejb-jar_1 1.dtd">
<ej b-j ar>
<descri ption>
This is an exanple for a Async Statel ess session bean
</ descri ption>
<ent er pri se-beans>
<sessi on>
<descri pti on>
This is an exanple for a Async Statel ess session bean
</ descri ption>
<ej b—nane>backup</ ej b-nanme>
<home>BackupHome</ hone>
<r enot e>Backup</ r enot e>
<ej b-cl ass>BackupBean</ ej b—cl ass>
<sessi on-t ype>St at el ess</ sessi on-t ype>
<transacti on-t ype>Cont ai ner </ transacti on-type>
</ sessi on>
</ enterpri se-beans>
<assenbl y-descri pt or >
<cont ai ner —-transacti on>
<met hod>
<ej b-nane>backup</ ej b—name>
<met hod-nanme>* </ net hod—-nanme>
</ met hod>
<trans-attri but e>Not Supported</trans-attri bute>
</ cont ai ner -t ransacti on>
</ assenbl y-descri pt or >
</ ej b-jar>

An example Client
Now let’s look at an example client program that uses this architecture. The complete client
implementation is shown below.

/1l Atest client.
/1l Notice that it has no know edge of EJB
i mport javax.jns.*;

public class Backupdient {
public static void main(String[] args) throws Exception ({

try {
[l JMS setup work.

/1l Get the queue connection factory.
[l This is the only "Sun Java Message Queue"
/I specific code.
QueueConnecti onFactory connecti onFactory =
new com sun. nessagi ng. QueueConnecti onFactory();

QueueConnecti on connection =

connecti onFactory. creat eQueueConnecti on();
QueueSessi on session =

connecti on. creat eQueueSessi on(fal se, 1);
Queue queue = session. creat eQueue("BackupQueue");
QueueSender sender = session. creat eSender (queue);
connection.start();

/]l Create a test nessage with a conpl ex
/1 SOAP packet

Text Message m = sessi on. cr eat eText I\/bssage(g;
m set Text ("This is a conpl ex SOAP packet."
sender.send(n;

/]l Create a nmessage to invoke a renote

/1 service called "backup"

MapMessage n2 = session. creat eMapMessage();
n2. set String("service", "backup");

n2. set | nt ("days", 25);

sender. send(n?);

/]l Create a nmessage to invoke renote service
/1 called "backup™ (again)

nm2 = sessi on. creat eMapMessage();

n2. set String("service", "backup");

n2. set I nt ("days", 15);

sender. send(n?);

/1 done.
session. cl ose();
connection. cl ose();

}

catch(Exception e) {
e.printStackTrace();

}

}
}

Note that the client has no EJB code in it at all. It looks like any other JMS client, simply sending
out messages to JMS destinations. A client in this architecture can send two types of messages: a
Text Message and a MapMessage. This client sends out both types as examples. The text
content of the Text Message can be anything that the receiving end (i.e the EJB) understands.
For example, here it is assumed to be a SOAP packet. The MapMessage format is more
interesting. It always contains a well-known key "service" that is set to the name of the service
desired, which in this case is "backup". Depending on the service, the message may also contain
"parameter"” keys. For example, the "backup" service requires one parameter "days". So the
message contains a "days" key that is set equal to the parameter value (25 in the first message,
15 in the second). Notice that the client sends all three messages without blocking and then ends.
The requests/services indicated by these messages are perfromed concurrently as you'll see for
yourself in the next section.

Compiling and Running the pieces

Setting up the environment
Copy the following into a batch file called setenv.bat. Be sure to change the directory paths.

REM Pat h i ncludes the bin direct or%/ for the Inprise AppServer
set PATH="E:\Program Fil es\Inprise\AppServer\bin"; C.\Program
Files\jdkl. 2.2\ bin; C:\WNNT\ syst enB2; C: \ W NNT; C: \ THI NKPAD

REM Setup the classpath for the ORB and EJB

REM This is required by the Del egator and the EJB
set CLASSPATH=E: \ Program

Fil es\ I nprise\AppServer\lib\vbjorb.jar;E \Program
Fil es\ I nprise\AppServer\lib\vbejb.jar; E:\Program
Fil es\ I nprise\ AppServer\Ilib\vbjdev; E:\ Program

Fil es\ I nprise\AppServer\Ilib\vbdev;

REM Setup the classpath for Java Message Queue

REM This is required by the client and the Del egator

set JMQ HOME=E:\ Program Fi | es\ JavaMessageQueuel. 0

set

CLASSPATH=%CLASSPATHY %9 MQ _ HOVE% | i b\j ns. jar; %M HOVE% | i b\j ng. j ar; %M
_HOVE% 1i b\ j ngadni n. j ar

Compiling the pieces
Copy the following into a batch file called make_all.bat.

vbj ¢ BackupHone. j ava

j avaziiop —conpil e BackupHore

vbjc *.java

jar cM backup_beans.jar META-INF *.cl ass

vbj cominprise.ejb.util.Verify backup_beans.jar

Now from a dos prompt in the directory that contains all the code (AsyncDelegator.java,
BackupHome.java, Backup.java, BackupBean.java, and BackupClient.java), run the setenv batch
file followed by make_all batch file as follows:

setenv
meke_al |

Start the OSAGENT
In the same dos box start the OSAGENT.

Start the Java Message Queue Router
From another dos box in the bin directory of the Java Message Queue installation, start the router
as follows:

set JAVA HOVE=C:\ Program Fil es\j dk1.2.2
set JMQ HOME=E:\ Program Fi | es\ JavaMessageQueuel. 0
i router

Start the AsyncDelegator
From a dos prompt in the same directory that you compiled the code in, start the delegator as
follows:

set env
vbj 9%-LAGS% AsyncDel egator del egator. properties

Here delegator.properties is a properties file in the same directory that contains the following.

del egat or. Bro erties
BackupQueue=backup| BackupHomne

Start an EJB container for the Backup bean
From a dos prompt in the same directory that you compiled the code in, start a container for the
backup EJB as follows:

set env
vbj cominprise. ejb. Contai ner ej bcontai ner backup _beans.jar —jts —jns

Run the Backup client
Finally, from a dos prompt in the same directory that you compiled the code in, start the client
program as follows:

set env
vbj Backupd i ent

Figures 2 and 3 show the dos boxes for the AsyncDelegator and the EJB container at this point on
my machine. You may have one, two, or three instances of the backup bean in the pool. | have
two as seen in figure 3, which is the most common. Also, note how the two backups started by the
client are occuring concurrently.

MG

& C:AWINNTAS vetem32hemd. exe - AsyncDelegator delegator properties

E:“Program Files<Inprise-AppServersexamplessejb AsyncEJB*Asynclelegator deleqypy
ator.properties

E:“Program Files~Inprise“Appierversexamplesse jhb~AsyncEJB>vhj -Djava.compile
»=NONE fAsvncDelegator delegator.properties
izyncDelegator iz Ready.

ress gienter? at any point to guit program.

hread BackupQueue started.

eceived a Messzage

orwarding message to backupof class type BackupHome
eceived a Message

orwarding message to backupof class type BackupHome
nvoker Thread is invoking method onMessage

eceived a Message

orwarding message to backupof class type BackupHome
nvoker Thread is invoking method invokeService
nuoker Thread is invoking method invokeService

Figure 2: The AsyncDelegator after the backup client has been executed

Initializing JME
Initializing JIS.... done
Initializing EJBs done
Container [ejhbcontainer] iz weady
EJB Container Statistics

Sun May 87 18:12:25 EDT
Memory {used? 1456 Kb <max 1456 HKh>
Memory <totald 2847 Kb <max 2847 Hh>
Memory (freel 28 .8

hackup
Total in memory a
Total in use

Got a message Thiz is a complex SOAP packet.

Invoking szervice: backup

Backing up all files that have a timestamp in the last 25 days.

Invoking service: hackup

Backing up all files that have a timestamp in the last 15 days.
EJB Container Statistics

Sun May @87 18:12:31 EDT
Memory Cused)? 1894 Kb (max 18%4 Kh)>
Memory {totald 2115 Kb <max 2115% Hh>
Memory (freel 18,8

hackup
2

READY
Total in memory
Total in usze

Backup Complete.

Figure 3: The EJB container after the backup client has been executed

Summary

In this chapter, | presented an architecture that allows the use of IMS with EJBs. This architecture
is based on a delegation model. One interesting aspect of this architecture is that clients need not
know that they are in fact dealing with EJBs. Similarly, EJBs are unaware that their clients are
using JMS. JMS is accessible from EJBs, so this was not critical for the success of the
architecture. This implies that | could have designed the onMessage and i nvokeSer vi ce
methods to accept JIMS messages. However, JMS messages are not required to be serializable,
so they cannot be passed by value as RMI (or RMI-IIOP) parameters. A few application servers
come integrated with JMS providers and hence passing messages in these cases would not be a
problem. However, my goal is always to avoid vendor specific capabilities. As an aside, it would be
nice if JIMS made the Message interface extend the Seri al i zabl e interface, which would not
require the reliance on vendor specific features/implementations to pass messages as parameters
in remote calls. Another advantage of this architecture is that is can be used to access any
resource/API that cannot normally be used directly with EJB, since the container or EJBs are
never aware of that resource being used in this architecture.

In this chapter, | also showed you the wrong way to use JMS and EJB together to prove that there
is definitely some thought involved in coming up with a workable and legal solution. The most
intuitive and/or simplest solution is not always the right solution. In the next chapter, | will introduce
you to the new Message—driven beans in EJB 2.0 that provide a standard way to integrate JMS
with EJBs.

Chapter 12

An Introduction to Message-Driven Beans in EJB 2.0%

The Basics

Until the introduction of EJB 2.0, only synchronous method calls on enterprise beans (Entity and
Session) were possible. JMS providers were still available as a resource to these beans and bean
developers could obtain asynchronous behavior using JMS, but as we saw in the previous chapter
this required significant work by the bean developer. Recognizing this, EJB 2.0 has introduced a
new type of enterprise bean, the MessageDr i venBean, that is an asynchronous consumer of
JMS messages. This chapter examines the message—-driven bean in detail.

As mentioned above and in chapter 11, EJB 1.1 had support for two types of enterprise beans -
entity beans and session beans. EJB 2.0 continues this support and adds a new message—driven
bean. There are two fundamental differences between the message—driven bean and the other
two types of enterprise beans. These differences are listed below.

1. Message—-driven beans do not have a home or a remote interface. This is because a
message—driven bean is not an RPC component and does not have business methods
that are invoked by a client.

2. Aclient interacts with a message—driven bean in the same way it interacts with any other
JMS application/server. The client simply sends a message to the appropriate destination
(queue or topic) and [optionally] receives messages on the appropriate (or same)
destination. In other words, from the perspective of a client, the existence of a Message-
driven bean is completely hidden behind the JMS destination for which it is the message
listener. This is shown in figure 1. As obvious from the figure, this is radically different than
the way clients interact with entity and session beans.

Container

Message-Driven
Bean Pool

Destination (Topic/Queue)

%0 A thorough understanding of the EJB 1.1 specification is required for this chapter.

Figure 1: The client view of a message—driven bean

But there are some similarities as well. For example, as far as maintaining state goes, a message-
driven bean is similar to a stateless session bean. It does not maintain any state for any specific
client, not even conversational state. And just as in the case of a stateless session bean, the
instance variables of the message—driven bean instance can also contain state across the
handling of client messages. Examples of such state include an open database connection or an
object reference to an EJB object.

Creating a Message—driven Bean

All message—driven beans must implement the MessageDr i venBean interface. All message—
driven beans must also implement the j avax. j ns. MessagelLi st ener interface. This is
because a message—driven bean is an asynchronous consumer of JMS messages (refer back to
chapters 2 and 3 for a refresher if needed). The container calls the onMessage net hod when a
message has arrived for the bean to service. Typically, the onMessage method contains the
business logic that handles the processing of the message.

EJB Note

Only message—driven beans can asynchronously receive messages i.e. implement the
Messageli st ener interface. Session and entity beans are not permitted to be JMS
message listeners. So if you use JMS from session or entity beans you must use the blocking
r ecei ve method to listen for messages.

Luckily, and very conveniently, the MessageDr i venBean interface already extends the
Messageli st ener interface, so you don't have to remember to implement the JMS specific
Messageli st ener interface. The definition of the MessageDr i venBean interface is shown
below.

package javax. ej b;
I mport javax.jns. Message;
i nport | avax.] ms. MessagelLi st ener,
public interface MessageDrivenBean extends Messageli stener {
public void onMessage(Message nessage);
public void ejbCr eategg;
.. public void e] bRenove();
}. public void set MessageDri venCont ext (MessageDri venCont ext nidc);

An example of a simple, yet complete (and legal) message—driven bean is as follows

cl ass Hel | oWworl dBean i npl ements MessageDrivenBean {
ic void e bCreateEg i

public void e bRemove
ic void set MessageDri venCont ext (MessageDri venCont ext ndc)

public void onMessage(Message rrsg? {
Systemout.printin("Hello Wrld.");

}

The container calls the set MessageDr i venCont ext method during the creation of the bean
with a message—driven context object that implements the MessageDr i venCont ext interface.
The MessageDr i venCont ext interface has the following methods:

e The setRol | backOnl y method allows the instance to mark the current transaction such
that the only outcome of the transaction is a rollback. Only instances of a message-driven
bean with container-managed transaction demarcation can use this method.

e The get Rol | backOnl y method allows the instance to test if the current transaction has
been marked for rollback. Only instances of a message—driven bean with container—
managed transaction demarcation can use this method.

e The get User Transact i on method returns the
j avax.transaction. User Transacti on interface that the instance can use to
demarcate transactions, and to obtain transaction status. Only instances of a message—
driven bean with bean—-managed transaction demarcation can use this method.

« ThegetCallerPrincipal methodis inherited from the j avax. ej b. EJBCont ext
interface. Message—driven bean instances must not call this method.

» TheisCallerlnRol e method is inherited from the EJBCont ext interface. Message—
driven bean instances must not call this method.

e« The get EJBHone method is inherited from the EJBCont ext interface. Message—driven
bean instances must not call this method.

| will discuss the remaining two methods, ej bCr eat e and ej bRenove, of the
MessageDri venBean interface when | discuss the lifecycle of a message-driven bean later in
this chapter.

The Container Contract

The container is responsible for making sure that all message—driven beans specified in the
deployment descriptor are started up when the container starts up. Most containers will create a
pool of each message—driven bean, just as they would for stateless session beans. Since all
message—driven bean instances are equal, the container may deliver a message to any of the
available message—driven bean instances in the pool for that destination. For example, if a
container maintains a pool of 50 message—driven beans for each destination, any of these 50
instances may be used to process a message delivered at that destination. The container
manages the life cycle of each message-driven bean instance. | will discuss the lifecycle of a
message—driven bean in the next section. The container also provides security, concurrency,
transactions, and other container specific services to the beans.

The Deployment Descriptor

The deployment descriptor allows the bean developer to concentrate on the business aspects of
the bean without worrying about deployment issues such as security. At run—time, the container
reads the deployment descriptor and deploys the beans as indicated by the descriptor. Thus the
deployment descriptor plays a major role in defining the contract between the container and the
bean. Deployment descriptors have played a key role in EJB since the very beginning and have
gone through several revisions, with each revision adding more power and flexibility. It is no
surprise that message—driven beans are also deployed using deployment descriptors. In this
section, | will examine those pieces of the deployment descriptor that deal with message—-driven
beans.

A message—driven bean is deployed using the message—dr i ven element, for example
<ej b-j ar >

<enterpri se-beans>
<nmessage-dri ven>

The message—driven element consists of the following
 The message-driven bean’s implementation class.

e The message-driven bean’s transaction management type

e An optional description.

e An optional display name.

* An optional small icon file name.

e An optional large icon file name.

« An optional name assigned to the enterprise bean.

« An optional declaration of the message—driven bean’s message selector.

« An optional declaration of the acknowledgment mode for the message—driven bean if
bean-managed transaction demarcation is used.

» An optional declaration of the message—driven bean’s intended destination type.

» An optional declaration of the bean’s environment entries.

* An optional declaration of the bean’s EJB references

* An optional declaration of the security identity to be used for the execution of the bean'’s
methods

» An optional declaration of the bean’s resource factory references.

* And an optional declaration of the bean’s resource environment references.

The declaration for this element is shown below

<! ELEMENT nessage-driven (
description?, display—-name?, snall-icon?, |arge-icon?,
ej b-nanme?, ejb-class, transaction-type,
nessage-sel ector?, acknow edge-node?,
nmessage-dri ven—-desti nati on?, env-entry*, ejb-ref*,
security-identity?, resource-ref*, resource-env-ref*

) >

Of these, only the following are message—driven bean specific
e The optional declaration of the message—driven bean’s intended destination type.
e The optional declaration of the message—driven bean’s message selector.
e The optional declaration of the acknowledgment mode for the message—driven bean if
bean—-managed transaction demarcation is used.

And the following, although not message—driven bean specific, have special meaning/implications
when with message—driven beans.

» The message-driven bean’s transaction management type

» The optional declaration of the bean’s resource environment references.

Now, let’s look at each of the above five children elements of the nessage—dri ven elementin
detail.

1. The optional declaration of the message—driven bean’s intended destination type.
The bean provider may provide the deployer with information about the destination to which a
message—driven bean should be assigned. This is done using the nessage-dri ven-
desti nati on element. The declaration of this element is shown below.

<! ELEMENT nessage-driven-destination (
) destinati on-type, subscription-durability?
>

As seen from the declaration, this element has one mandatory and one optional child element.
The mandatory child is the dest i nat i on-t ype element, which is used to advise the
deployer as to the actual destination type to which a message—driven bean should be
assigned. The type is specified by the Java interface expected to be implemented by the
destination. The destination—type element must be one of the two following:

<desti nati on—-type>j avax. j ns. Queue</ desti nati on-type>
<desti nati on-type>j avax. | ns. Topi c</ desti nati on-type>

If the destination is a JMS topic then the subscri pti on-t ype element may be used to
specify whether the subscriptions are durable. The subscription—durability element must be
one of the two following:

<subscri pti on—dur abi | i t y>dur abl e</ subscri pti on—-durability>
<subscri pti on—dur abi | i t y>nondur abl e</ subscri pti on-durability>

By default, topic subscriptions are non—durable. Also, as mentioned previously, the nressage-
dri ven—-desti nati on element is optional and is for informational purposes only. If it is not
specified, no default value for this tag is assumed.

2. The optional declaration of the message—driven bean’s message selector.
The Bean Provider may declare the JMS message selector to be used in determining which
messages the Message—driven bean is to receive. This is done using the nessage-
sel ect or element. For example,

<nmessage-sel ect or >
JMBType = "car’ AND color = '"blue’ AND wei ght >3' 2500
</ message-sel ect or >

Obviously, if the message-sel ect or element is not specified then no message selector is
used and no message filtering occurs.

3. The message-driven bean’s transaction management type
This is a mandatory child element of the mressage-dr i ven element. If the enterprise bean is
a Session or a Message—driven bean, the bean provider must use the t ransact i on-t ype
element to declare whether transaction demarcation is performed by the enterprise bean or by
the container. The transaction—type element must be one of the two following:

<transaction-type>Bean</transacti on-type>
<transacti on-t ype>Cont ai ner </ transaction-type>

The onMessage method is invoked in the scope of a transaction determined by the
transaction attribute specified in the deployment descriptor. If the bean is specified as using
container—-managed transaction demarcation, either the Requi r ed or the Not Support ed
transaction attribute must be used. When a message—-driven bean using bean-managed
transaction demarcation uses the j avax. t ransacti on. User Tr ansact i on interface to
demarcate transactions, the message receipt that causes the bean to be invoked is not part of
the transaction. If the message receipt is to be part of the transaction, container—-managed
transaction with the Requi r ed transaction attribute must be used. Also note that a message-
driven bean’s newl nst ance, set MessageDri venCont ext, ej bCr eat e, and

ej bRemove methods are called with an unspecified transaction context.

4. The optional declaration of the acknowledgment mode
The bean provider may declare the JMS acknowledgment mode option that should be used for
a message—driven bean with bean managed transaction demarcation. The acknowledge-
mode element specifies whether AUTO_ACKNOW.EDGE or DUPS_OK _ACKNOW.EDGE message
acknowledgment semantics (on the JMS session) should be used when a message is
delivered to the onMessage method of a message—driven bean that uses bean managed
transaction demarcation. The acknowl edge—node element must be one of the following.

% No, thisis not an error. > is an entity definition for ">". Since ">" isa special character i.e. atag
delimiter in XML, it must be replaced by this entity definition if it used for any other purpose, such asin
this example

<acknow edge-node>aut o—acknow edge</ acknowl edge-node>
<acknow edge-nmode>dups-ok—-acknow edge</ acknow edge—-node>

Note that if container managed transactions are used then the acknowledgement mode is
always AUTO_ACKNOW.EDGE. This is also the default if this element is not specified. Also,
message—driven beans must not use the JMS API for message acknowledgment.

5. The optional declaration of the bean’s resource environment references.
The r esour ce—env-r ef element contains a declaration of an enterprise bean’s reference to
an administered object associated with a resource in the enterprise bean’s environment. It
consists of an optional description, the resource environment reference name, and an
indication of the resource environment reference type expected by the enterprise bean code.
In the case of the message—driven bean this element may be used to indicate the exact
destination to use (as opposed to just the destination type).

For example,

<r esour ce—-env-r ef >
<r esour ce—env-r ef —name>
j ms/ St ockQueue
</ resour ce-env-r ef —-name>
<resour ce-env-ref -t ype>
j avax. j ms. Queue
</ resource-env-ref -type>
</ resour ce-env-r ef >

In this case the name jms/StockQueue can be bound to the actual JMS queue that the
container can associate with the message—driven bean instance(s).

The Lifecycle of a Message—Driven Bean

Just as entity and session beans have well-defined lifecycles, so does the message—driven bean.
The message—driven bean’s lifecycle has two states: the does not exist state and the method-
ready pool state. Once again, note the similarity with the stateless session bean'’s lifecycle. The
lifecycle is shown in figure 2.

dioes not

exist
s sty) . ‘
E. nw listande)) ejbRemover)
2. sethlessageDrivenContexi{mmle)
1. ejhCreate()

metfind-ready
anMeszsagel) ponl
[

Figure 2: Lifecycle of a Message—Driven Bean

When the container starts up all message—driven beans are in the does not exist state. Typically,
the container will create a number of bean instances and enter them into the method-ready pool

state. If at any time the number of message—driven bean instances are insufficient, more instances
may be created. Let's examine the lifecycle in three stages

1. Transitioning from the does not exist state to the method-ready pool state
This involves four steps

a.

b.

The container creates a new message—driven bean context object for the new
message—driven bean that is about to be created.

The container instantiates a bean instance by invoking the Cl ass. newl nst ance
method on the message—driven bean class. Thus all message—-driven beans must
have a default constructor. In fact, an enterprise bean must never define a constructor
at all, but take care of all initialization in the ej bCr eat e method instead.

The container then calls the set MessageDr i venCont ext method on the newly
created bean instance passing in the context object created in (a).

The container calls the ej bCr eat e method on the bean instance. A message—driven
bean has only one ej bCr eat e method, similar to the stateless session bean and this
method is called only once in the lifecycle of the message—driven bean.

These four steps are shown in figure 3.

Container Message-Driven Context Messaige-Driven Bean Instance

I
| 1inews [|
' I

I

I

L e |
L i h__._
I
I
L 2rzetressageDrived Context L~
L i F_._
I
I
4ejbCreate
] : —
I
I
I
I
I
I
I
1

i
I
I
I

Figure 3: The creation of a message—driven bean

Since message—driven beans do not have any conversational state associated with them they
are not subject to activation and passivation. Once again this is similar to stateless session
beans. As a result message—driven beans can maintain open connections to resources for
their entire lifecycle. This is shown in the code fragment below.

/1 A message-driven bean that maintains an
/1 open database connection through its life

public class Hell owrl dBean i npl ements MessageDri venBean {
private Connection conn = null;
public void ejbCreate() {

/I Create and keep a reference
//to a dat abase connecti on
conn = ?

public void ejbRemove() {

/1 Clean up
conn. cl ose();
conn = null;

public void set MessageDri venCont ext (
MessageDri venCont ext ndc) { }

public void onMessage(Message msg) {
/1 Use the connection to store the nessage
/1 contents into the database.

}
}

Life in the method-ready pool state

When a message arrives at a destination, the container picks the next available message—
driven bean for that destination from the pool of such beans to process the message by calling
the onMessage method on the selected bean as shown in figure 4.

Destination Container Messane-Driven Bean Instance

I
B I
Tiublishior sehd)
——._

o
I

2ireceive

B!

— 1

HonMessage

LA
I
I
I
I
I
I
I
I
I
I

L
I
I
I
I
I

Figure 4: How a message flows from the client to the message—driven bean

Remember, JMS mandates that all calls to the onMessage method be serialized. | discussed
this in detail in chapter 3. Therefore, when a bean is in use by the container it is unavailable to
process any other messages. So a message—driven bean does not have to be coded to be
reentrant or thread—safe.

3. Transitioning from the method-ready pool state to the does not exist state
When the container no longer needs a message—driven bean, it will invoke the ejpRemove
method signaling the death of this bean. This is shown in figure 5.

Container Message-Driven Bean Instance

U

1lajbRemaove |

Figure 5: The end of a message—driven bean’s life

If the bean maintains any open connections to resources, this is the time to close them and
clean up. When this method is called, the message—driven context is still valid and may be
used if necessary. According the EJB specification, the bean provider cannot assume that the
container will always invoke the ej bRenove method on a message—driven bean instance.

The following scenarios result in ej bRenbve not being called on an instance:
» A crash of the EJB Container.
» A system exception thrown from the instance’s method to the Container.

If the message—-driven bean instance allocates resources in the ej bCr eat e method and/or in
the onMessage method, and releases normally the resources in the ej bRenove method,
these resources will not be automatically released in the above scenarios. The application
using the message—driven bean should provide some clean up mechanism to periodically
clean up the unreleased resources.

Summary

The introduction of the message—driven bean has taken the EJB development model into a new
era of asynchronous bean processing and has solidified the position of JMS within the J2EE
platform. Furthermore, the design of the message—driven bean has many parallels with the
stateless session bean, which reduces the learning curve for existing EJB developers.

Appendix A

The JMS Exception Family

It has been argued that of all professionals, software professionals have the biggest egos. This is
probably why most software professionals — sometimes including myself — have a hard time
admitting that software written by us seldom works the way it's supposed to, the first time around.
There are many reasons behind this, time pressures being just one of them. Whatever the reasons
are, though, almost all will agree that catching and processing the right exceptions can go a long
way in easing the pain associated with making the software accomplish its "real" task.

In this appendix, | will provide an overview of standard exceptions defined in the JMS.

Understanding the JMS Exceptions

MessageEOFException
InvalidDestinationException N
+MessageEOF Excaption lllegalStateException MessageNotReadableException
+MessageEOF Exception +mvalidDestinationException : '
InvalidClientiDException +mvalidDestinationException *llegalStateEatption +MessageNotReadabIeE}{cem!Un
+lllegalStateException +MesgagehotReadableExcention

+nvalidClientDException
+validClientDException

MessageFormatException

MessageNotWriteahleException

+hessageFormatException

+hlessageM oftiiteanleException JMSException] sMessagsFamatException
+hessageNatititeahleException —=
+IMSException - -
InvalidSelectorException +IM5Exception SSecuriyexception
> errorCode:Sting 4 +IME5ecurityException
+lnvalidSelectorException linkedException:Exception +IM9SecurityExceptian
+nvalidSelectorException
% ResourcefllocationException
TransactioninProgressException
TransactionRalledBackException +ResourceAllocationException
+TrangactioninPrograssException +ResourcedllocationException
+TransactioninProgressException +TransactionRolledBackException
+TrangactionRolledBackException

Figure 1: The JMS Exception classes

As shown in figure 1, JMS defines quite a few exceptions for reporting basic error conditions to the
client of a IMS compliant messaging product.

While there are many cases where JMS mandates that a specific IMS exception must be thrown,
there are also quite a few cases in which JMS only [strongly] suggests that providers use one of
the standard exceptions where possible. JMS providers may also derive provider specific
exceptions from these if needed. | will clearly point out those situations in which IMS manadates
the use of a particular exception by using the words "must be" in the exception description.

JMSException

JMSExcept i on as the root interface for exceptions thrown by JMS methods. JMSExceptionis a
checked exception. This means that the caller of any method that throws this exception must
either catch it, or declare it (or one of its superclasses) as being thrown in the t hows part of the
method declaration. The definition of IMSException is shown below:

package javax. | s;

public class JMSException extends Exception {
private String errorCode;
private Exception |inkedException;

public JMSException(String reason, String errorCode) {
super (reason);
this.errorCode = errorCode;
I i nkedException = null;

public JVMSException(String reason) {
super (reason);
this.errorCode = null;
I i nkedException = null;

public String getErrorCode() {
return this.errorCode;

public Exception getLinkedException() {
return (linkedException);

public synchronized void setLinkedExcepti on(Exception ex) ({
} I i nkedException = ex;

}

JMSExcept i on provides the following information:

* A provider—specific string describing the error, which is the standard java exception
message and is available via get Message().

* A provider—specific error code of type St ri ng and available through the method
get Err or Code on JVMSExcept i on.

* Areference to another exception. This is often a JMS exception that is the result of a

lower level problem. If such an exception has been linked then it is available through the
method get Li nkedExcept i on on JMSExcept i on.

The first two pieces of information are specified via the appropriate constructor on the
JMSExcept i on class. The linked exception is set via the set Li nkedExcept i on method.

Now, let’s take a look at each of the exceptions that are derived from JMSException. For each
exception, I'll describe the condition(s) under which the exception may/must be thrown and follow
it with definition of the exception. As you'll see the subclasses are all very similar in definition and
do not add any new data to the base JMSExcept i on.

Il egal St at eExcepti on
This exception is thrown when a method is invoked at an illegal or inappropriate time or if the
provider is not in an appropriate state for the requested operation. For example, this exception

should be thrown if Sessi on. conmi t () is called on a non-transacted session, or calling the
set d i ent | Dmethod on a Connect i on object whose client identifier has already been set.

public class |11l egal StateException extends JMSException {
public Illegal StateException(String reason,
String errorCode)
super (reason, error Code);

package j avax.{ ns;
I

public Illegal StateException(String reason) {
super?reason);

}

JMSSecurityException
This exception must be thrown when a provider rejects a user name/password submitted by a

client. It may also be thrown for any case where a security restriction prevents a method from
completing.

package { avax. j Ims;
public class JMSSecurityException extends JMSException {
public JMSSecurityException(String reason,
String errorCode) {
super (reason, error Code);

public JVMSSecurityException(String reason) {
super (reason);

}

InvalidClientIDException

This exception must be thrown when a client attempts to set a connection’s client id to a value that
is rejected by a provider.

package javax. | s;
public class InvaliddientlDException extends JMSException {
public InvaliddientlDException(String reason) {
super (reason);

public InvaliddientlDException(String reason, String
error Code) {

super (reason, errorCode);
}

InvalidDestinationException

This exception must be thrown when a destination is either not understood by a provider or is no
longer valid.

package javax.j ms;
public class InvalidDestinati onException extends JMSException {
public InvalidDestinationException(String reason,
String errorCode) {
super (reason, error Code);

public InvalidDestinati onException(String reason) {
super (reason);

}

InvalidSelectorException
This exception must be thrown when a JMS client attempts to give a provider a message selector
with invalid syntax. | will discuss the message selector syntax in detail in the next chapter.

package javax. | s;
public class InvalidSel ectorExcepti on extends JMSException {
public InvalidSel ectorException(String reason,
String errorCode) {
super (reason, errorCode);

public InvalidSel ectorException(String reason) ({
super (reason);

}

MessageEOFException
This exception must be thrown when an unexpected end of stream has been reached when a

St r eanVessage or Byt esMessage is being read. I'll discuss the different types of messages
and how to read them in the next chapter as well.

package javax. | s;
public class MessageEOFExcepti on extends JMSException {
public MessageEOFException(String reason,
String errorCode) {
super (reason, errorCode);

public MessageEOFException(String reason) ({
super (reason);

}

MessageFormatException
This exception must be thrown under the following circumstances:
* A JMS client attempts to use a data type not supported by a message.
* A JMS client attempts to read data in a message as the wrong type.
* A JMS client makes an equivalent type error with message property values. For example,
trying to read a boolean value in the message as a long type.
* A JMS client gives a provider a type of message the provider cannot accept.

package javax. | s;
public class MessageFor mat Excepti on extends JMSException {
publ i c MessageFor mat Exception(String reason,
String errorCode)
super (reason, errorCode);

publ i c MessageFor mat Exception(String reason) ({
super (reason);

}

MessageNotReadableException
This exception must be thrown when a JMS client attempts to read a write—only message.

package javax. | ms;
public class MessageNot Readabl eExcepti on extends JMSException {
publ i c MessageNot Readabl eException(String reason,
String errorCode)
super (reason, errorCode);

public
MessageNot Readabl eExcepti on(String reason) {
super (reason);

MessageNotWriteableException

This exception must be thrown when a JMS client attempts to write to a read—only message. For
example, when a client receives a message, the message body is read only. If an attempt is made
to change the contents of the body a MessageNot Wi t eabl eExcepti on exception must/will

be thrown.

package javax. | s;
public class MessageNot Wit eabl eExcepti on extends JMSException {
public MessageNot Witeabl eException(String reason) {

super (reason);

}
public MessageNot Witeabl eException(String reason,
String errorCode)
super (reason, errorCode);

}

ResourceAllocationException
This exception is thrown when a provider is unable to allocate the resources required by a method.

The JMS specification does not specify what types of resources thins includes and hence it
depends on the provider.

package javax.j ms;
public class ResourceAl | ocati onExcepti on extends JMSException {
public ResourceAl |l ocati onException(String reason,
String errorCode) {
super (reason, errorCode);

public ResourceAl | ocati onException(String reason) {
super (reason);

}

TransactionInProgressException
This exception is thrown when an operation is invalid because a transaction is in progress.

Attempting to call Sessi on. conmi t () when a session is part of a distributed transaction is an
example of such a situation.

package javax. | s;
public class TransactioninProgressException extends JMSException {
public Transactionl nProgressException(String reason,
String errorCode) {
super (reason, errorCode);

public Transactionl nProgressException(String reason) {
super (reason);

}

TransactionRolledBackException
This exception must be thrown when an attempt to commit the current transaction results in a

rollback of the transaction.

package javax.j ms;
public class Transacti onRol | edBackExcepti on extends JMSException {
public TransactionRol | edBackException(String reason,
String errorCode) {
super (reason, errorCode);

public TransactionRol | edBackException(String reason) {
super (reason);

Summary

JMS provides a rich exception hierarchy to aid clients in designing and debugging their message-
based applications. Understanding this exception hierarchy can come in very handy and can also
help understand the workings of JMS.

Appendix B

JMS Compliant Vendors?®*

Commercial Implementations

Allaire Corporation (http://www.allaire.com/products/jrun)

JRun 3.0 provides a JMS 1.0 compliant Java—-based messaging server built from the ground up to
specification. To boost flexibility and performance, the JRun messaging server is built using EJBs
and runs in the same process as the EJB and transaction server.

BEA Systems (http://www.beasys.com/)

WebLogic includes a full-featured messaging system, which can be configured by setting
properties in the webl ogi c. properti es file, from the WebLogic Console, or programmatically,
using the JMS interfaces.

Fiorano Software (http://www.fiorano.com/)

Not only does Fiorano provide a JMS 1.0 compliant messaging server, but it also provides a
comprehensive test suite for testing the conformance of a JMS implementation to the API
standards made by Sun Microsystems. Version 2.0 of the JIMS++ Suite, includes positive
conformance tests for each line of the JMS 1.01 API. IMS++ is currently being used by Oracle
Corporation, BEA/Web-Logic, Progress Software and others for IMS conformance testing. The
JMS++ Test Suite is available free of charge to corporations for the purpose of evaluating various
JMS implementations.

Gemstone (http://www.gemstone.com/)

GemStone/J supports vendors who comply with the JIMS 1.0 specification. JMS is an optional
feature in all editions of GemStone/J. All sales, service and support are contracted directly through
the JMS vendor.

IBM (http://www—4.ibm.com/software/ts/mgseries/api/mgjava.html)
One of the ways in which MQSeries supports building message—based applications in Java is by
providing a set of classes that implement the JMS 1.0 specification. A JMS application can use the
classes to send MQSeries messages to either existing MQSeries or new JMS applications. Use of
the MQSeries classes for Java Message Service offers benefits associated with using an open
standard to write MQSeries applications, such as the protection of investment both in skills and
application code. In addition the JMS classes provide some additional features not present in the
MQSeries classes for Java. These extra features include:

» Explicit support for publish and subscribe

» Asynchronous Message Delivery

* Message Selectors

e Structured message classes

PCB Systems (http://www.pcbsys.com/nirvana/njms.html)
Nirvana is a 100% Java Message Oriented Middleware (MOM) package. PCB Systems also
offers nJMS, whixh is an implementation of the JMS 1.0 specification on top of Nirvana.

Oracle (http://www.oracle.com/)
The Oracle application server provides support for JIMS 1.0

% |n alphabetical order; not an exhaustive list

Progress Software (http://www.progress.com/sonicmq/)
SonicMQ is a fully IMS 1.0 compliant messaging server.

SAGA Software (http://www.sagasoftware.com/)
Sagavista is a IMS compliant enterprise application integration (EAI) product.

SoftWired (http://www.softwired—-inc.com/)
There are three core products all of which are JMS 1.0 compliant. The most interesting product is
iBus//Mobile, a JMS implementation for mobile devices.

SpiritSoft (http://www.spirit—soft.com/)
SpiritWave is a JMS 1.0 compliant implementation.

Sun Microsystems (http://www.sun.com/workshop/img/index.html)

Java Message Queue is a fully JIMS 1.0 compliant messaging server. Java Message Queue has
been certified by iPlanet for operation with its iPlanet Application Server 6.0 release. Java
Message Queue software is comprised of two primary components: a client library and a router.
The client side APIs are written entirely in the Java language, but have not been run through any
of the tests necessary to certify them as 100% Pure Java. The router element of Java Message
Queue is available only as a C language implementation, though plans are underway to develop a
Java version in the future.

Venue Software (http://www.venuesoftware.com/)
A JMS 1.0 compliant messaging product available.

Open Source Implementations

ObjectCube (http://www.objectcube.com/products.htm)

ObjectEvents is a JMS (Java Messaging Service) compliant message oriented middle ware.
ObjectEvents is entirely written in Java, but non—Java clients can access the middle ware since
the protocol is open and based on TCP/IP and XML.ObjectEvents is distrbuted as open source
software as part of the Enhydra J2EE application server. ObjectEvents Pro is the commercial
version of the ObjectEvents product. In addition to JMS complience, functions such as Load
Balancing, Transactions, Fault Tolerance, Delivery Notification, Security and Message Repository
will be added based on customer demand.

OpenJMS (http://openjms.exolab.org/)

OpenJMS is an open source implementation of JMS 1.0, sponsored by Intalio, Inc. and is part of
the much larger open source Intalio platform. The initial development effort was undertaken by Jim
Alateras and Jim Mourikis based in Melbourne, Australia.

ObjectWeb (http://www.objectweb.org/joram/joramHomePage.htm)
JORAM (Java Open Reliable Asynchronous Messaging) incorporates a JMS compliant messaging
server.

Appendix C

Java Naming and Directory Service (JNDI)

JNDI is an API specified in Java that provides naming and directory functionality to applications
written in Java. Naming and directory services play a vital role in intranets and the Internet by
providing network-wide sharing of a variety of information about users, machines, networks,
services, and applications. Examples of popular naming services include the RMI registry (used
with RMI), the CORBA Naming Service specified by OMG, and the CORBA Trader Service (also
specified by OMG). Recognizing the existence of so many industry— adopted naming and directory
services, Javasoft decided not to create yet another naming and directory service, but an API that
standardizes access to other naming and directory services from Java.

JNDI is designed especially for Java by using Java’s object model. Using JNDI, Java applications
can store and retrieve named Java objects of any type. Also as mentioned above, JNDI is defined
independent of any specific naming or directory service implementation. It enables Java
applications to access different, possibly multiple, naming and directory services using a common
API. Different naming and directory service providers can be plugged in seamlessly behind this
common API. This allows Java applications to take advantage of information in a variety of existing
naming and directory services, such as LDAP, Novell Netware NDS, DNS, etc., and allows Java
applications to coexist with legacy applications and systems.

For a tutorial of how to use JNDI refer to the following series of articles by Todd Sundsted in Java
World

1. JNDI overview, Part 1: An introduction to naming services
http://www.javaworld.com/javaworld/jw—01-2000/jw—01-howto.html
2. JNDI overview, Part 2: An introduction to directory services
http://www.javaworld.com/javaworld/jw—02-2000/jw—02—-howto.html
3. JNDI overview, Part 3: Advanced JNDI
http://www.javaworld.com/javaworld/jiw—03—-2000/jw—03—howto.html
4. JNDI overview, Part 4: the Doc—-u—Matic, a JNDI application
http://www.javaworld.com/javaworld/jiw—03-2000/jw—0331—howto.html

